Skip to main content

Advertisement

Log in

Dietary and Lifestyle-Centered Approach in Gout Care and Prevention

  • Crystal Arthritis (M Pillinger and M Toprover, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

We aim to provide a comprehensive review of the available literature to inform dietary recommendations for patients with gout and hyperuricemia that have the potential to simultaneously lower serum urate and reduce gout morbidity while addressing gout’s cardiometabolic comorbidities holistically.

Recent findings

The global burden of gout is rising worldwide, particularly in developed nations as well as in women. Patients with gout are often recommended to follow a low-purine (i.e., low-protein) diet to avoid purine-loading. However, such an approach may lead to increased consumption of unhealthy carbohydrates and fats, which in turn contributes to metabolic syndrome and subsequently raises serum urate levels and leads to adverse cardiovascular outcomes. On the other hand, several well-established diets for cardiometabolic health, such as the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets, in combination with weight loss for those who are overweight or obese, also have beneficial effects on relevant gout endpoints.

Summary

It is important to recognize not only the direct effect of diet on hyperuricemia and gout, but its mediated effect through obesity and insulin resistance. Thus, several preeminent healthy dietary patterns that have proven benefits in cardiometabolic health have the power to holistically address not only gout morbidity but also its associated comorbidities that lead to premature mortality among patients with gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Safiri S, Kolahi AA, Cross M, Carson-Chahhoud K, Hoy D, Almasi-Hashiani A, et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020;72(11):1916–27. Analysis of the Global Burden of Disease Study which revealed that the burden of gout increased worldwide from 1990 to 2017. New Zealand, Australia, and the USA had the highest age-standardized point prevalence estimates of gout in 2017.

  2. • Xia Y, Wu Q, Wang H, Zhang S, Jiang Y, Gong T, et al. Global, regional and national burden of gout, 1990-2017: a systematic analysis of the Global Burden of Disease Study. Rheumatology (Oxford). 2020;59(7):1529–38. Analysis of the Global Burden of Disease Study which revealed that the global burden of gout increased worldwide, especially in high sociodemographic index countries. Additionally identified high BMI as the leading risk factor for the buden of gout.

    Article  CAS  Google Scholar 

  3. • Elfishawi MM, Zleik N, Kvrgic Z, Michet CJ Jr, Crowson CS, Matteson EL, et al. The rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years. J Rheumatol. 2018;45(4):574–9. A population-based study out of Olmsted County, Minnesota, which reported on the rising incidence of gout, as well as higher comorbidity burden among patients with gout at time of diagnosis.

    Article  PubMed  Google Scholar 

  4. Elfishawi MM, Zleik N, Kvrgic Z, Michet CJ Jr, Crowson CS, Matteson EL, et al. Changes in the presentation of incident gout and the risk of subsequent flares: a population-based study over 20 years. J Rheumatol. 2020;47(4):613–8.

    Article  PubMed  Google Scholar 

  5. Yokose C, McCormick N, Choi HK. The role of diet in hyperuricemia and gout. Curr Opin Rheumatol. 2021;33(2):135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lim SY, Lu N, Oza A, Fisher M, Rai SK, Menendez ME, et al. Trends in gout and rheumatoid arthritis hospitalizations in the United States, 1993-2011. JAMA. 2016;315(21):2345–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rai SK, Avina-Zubieta JA, McCormick N, De Vera MA, Lacaille D, Sayre EC, et al. Trends in gout and rheumatoid arthritis hospitalizations in Canada From 2000 to 2011. Arthritis Care Res. 2017;69(5):758–62.

    Article  Google Scholar 

  8. Russell MD, Yates M, Bechman K, Rutherford AI, Subesinghe S, Lanyon P, et al. Rising incidence of acute hospital admissions due to Gout. J Rheumatol. 2020;47(4):619–23.

    Article  CAS  PubMed  Google Scholar 

  9. Dehlin M, Jacobsson LTH. Trends in gout hospitalization in Sweden. J Rheumatol. 2018;45(1):145–6.

    Article  PubMed  Google Scholar 

  10. Kiadaliri AA, Englund M. Temporal trends and regional disparity in rheumatoid arthritis and gout hospitalizations in Sweden, 1998-2015. Clin Rheumatol. 2018;37(3):825–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gao Q, Cheng X, Merriman TR, Wang C, Cui L, Zhang H, et al. Trends in the manifestations of 9754 gout patients in a Chinese clinical center: a 10-year observational study. Joint Bone Spine. 2020:105078. https://doi.org/10.1016/j.jbspin.2020.09.010.

  12. Proudman C, Lester SE, Gonzalez-Chica DA, Gill TK, Dalbeth N, Hill CL. Gout, flares, and allopurinol use: a population-based study. Arthritis Res Ther. 2019;21(1):132.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bajpai R, Muller S, Mallen C, Watson L, Richette P, Hider SL, et al. Onset of comorbidities and flare patterns within pre-existing morbidity clusters in people with gout: 5-year primary care cohort study. Rheumatology (Oxford). 2021. https://doi.org/10.1093/rheumatology/keab283.

  14. Rothenbacher D, Primatesta P, Ferreira A, Cea-Soriano L, Rodriguez LA. Frequency and risk factors of gout flares in a large population-based cohort of incident gout. Rheumatology (Oxford). 2011;50(5):973–81.

    Article  Google Scholar 

  15. Watson L, Belcher J, Nicholls E, Muller S, Mallen C, Roddy E. Latent class growth analysis of gout flare trajectories: a three-year prospective cohort study in primary care. Arthritis Rheumatol. 2020;72(11):1928–35.

    Article  CAS  PubMed  Google Scholar 

  16. Fisher MC, Rai SK, Lu N, Zhang Y, Choi HK. The unclosing premature mortality gap in gout: a general population-based study. Ann Rheum Dis. 2017;76(7):1289–94.

    Article  PubMed  Google Scholar 

  17. Zhang Y, Lu N, Peloquin C, Dubreuil M, Neogi T, Avina-Zubieta JA, et al. Improved survival in rheumatoid arthritis: a general population-based cohort study. Ann Rheum Dis. 2017;76(2):408–13.

    Article  PubMed  Google Scholar 

  18. Johnson RJ, Rideout BA. Uric acid and diet--insights into the epidemic of cardiovascular disease. N Engl J Med. 2004;350(11):1071–3.

    Article  CAS  PubMed  Google Scholar 

  19. Choi HK, Mount DB, Reginato AM. American College of P, American Physiological S. Pathogenesis of gout. Ann Intern Med. 2005;143(7):499–516.

    Article  CAS  PubMed  Google Scholar 

  20. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol. 2019;71(6):991–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klemp P, Stansfield SA, Castle B, Robertson MC. Gout is on the increase in New Zealand. Ann Rheum Dis. 1997;56(1):22–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lennane GA, Rose BS, Isdale IC. Gout in the Maori. Ann Rheum Dis. 1960;19:120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA. 2000;283(18):2404–10.

    Article  CAS  PubMed  Google Scholar 

  24. Kagan A, Harris BR, Winkelstein W Jr, Johnson KG, Kato H, Syme SL, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: demographic, physical, dietary and biochemical characteristics. J Chronic Dis. 1974;27(7-8):345–64.

    Article  CAS  PubMed  Google Scholar 

  25. Torralba TP, Bayani-Sioson PS. The Filipino and gout. Semin Arthritis Rheum. 1975;4(4):307–20.

    Article  CAS  PubMed  Google Scholar 

  26. Prior IA, Welby TJ, Ostbye T, Salmond CE, Stokes YM. Migration and gout: the Tokelau Island migrant study. Br Med J (Clin Res Ed). 1987;295(6596):457–61.

    Article  CAS  Google Scholar 

  27. Ostbye T, Welby TJ, Prior IA, Salmond CE, Stokes YM. Type 2 (non-insulin-dependent) diabetes mellitus, migration and westernisation: the Tokelau Island Migrant Study. Diabetologia. 1989;32(8):585–90.

    Article  CAS  PubMed  Google Scholar 

  28. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis. 2015;74(4):661–7.

    Article  PubMed  Google Scholar 

  29. Miao Z, Li C, Chen Y, Zhao S, Wang Y, Wang Z, et al. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol. 2008;35(9):1859–64.

    PubMed  Google Scholar 

  30. Rai SK, Antonio Aviña-Zubieta J, McCormick N, De Vera MA, Shojania K, Sayre EC, et al. The rising prevalence and incidence of gout in British Columbia, Canada: population-based trends from 2000 to 2012. Semin Arthritis Rheum. 2017;46(4):451–6.

    Article  PubMed  Google Scholar 

  31. Zobbe K, Prieto-Alhambra D, Cordtz R, Hojgaard P, Hindrup JS, Kristensen LE, et al. Secular trends in the incidence and prevalence of gout in Denmark from 1995 to 2015: a nationwide register-based study. Rheumatology (Oxford). 2019;58(5):836–9.

    Article  Google Scholar 

  32. Tsoi MF, Chung MH, Cheung BMY, Lau CS, Cheung TT. Epidemiology of gout in Hong Kong: a population-based study from 2006 to 2016. Arthritis Res Ther. 2020;22(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Collaboration NCDRF. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.

    Article  Google Scholar 

  34. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12.

    Article  PubMed  Google Scholar 

  36. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. Diabetes Care. 2011;34(1):216–9.

    Article  PubMed  Google Scholar 

  37. Lyngdoh T, Vuistiner P, Marques-Vidal P, Rousson V, Waeber G, Vollenweider P, et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One. 2012;7(6):e39321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oikonen M, Wendelin-Saarenhovi M, Lyytikainen LP, Siitonen N, Loo BM, Jula A, et al. Associations between serum uric acid and markers of subclinical atherosclerosis in young adults. The cardiovascular risk in Young Finns study. Atherosclerosis. 2012;223(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Zhang T, Liu Y, Tang F, Xue F. Association of serum uric acid with metabolic syndrome and its components: a Mendelian randomization analysis. Biomed Res Int. 2020;2020:6238693.

    PubMed  PubMed Central  Google Scholar 

  40. Rasheed H, Hughes K, Flynn TJ, Merriman TR. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ Cardiovasc Genet. 2014;7(6):830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, et al. Causal assessment of serum urate levels in cardiometabolic diseases through a mendelian randomization study. J Am Coll Cardiol. 2016;67(4):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Keerman M, Yang F, Hu H, Wang J, Wang F, Li Z, et al. Mendelian randomization study of serum uric acid levels and diabetes risk: evidence from the Dongfeng-Tongji cohort. BMJ Open Diabetes Res Care. 2020;8(1). https://doi.org/10.1136/bmjdrc-2019-000834.

  44. Pfister R, Barnes D, Luben R, Forouhi NG, Bochud M, Khaw KT, et al. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia. 2011;54(10):2561–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sluijs I, Holmes MV, van der Schouw YT, Beulens JW, Asselbergs FW, Huerta JM, et al. A Mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes. 2015;64(8):3028–36.

    Article  CAS  PubMed  Google Scholar 

  46. Palmer TM, Nordestgaard BG, Benn M, Tybjaerg-Hansen A, Davey Smith G, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013;347:f4262.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Si S, Tewara MA, Li Y, Li W, Chen X, Yuan T, et al. Causal pathways from body components and regional fat to extensive metabolic phenotypes: a Mendelian randomization study. Obesity (Silver Spring). 2020;28(8):1536–49.

    Article  CAS  Google Scholar 

  48. Larsson SC, Burgess S, Michaelsson K. Genetic association between adiposity and gout: a Mendelian randomization study. Rheumatology (Oxford). 2018;57(12):2145–8.

    Article  CAS  Google Scholar 

  49. Yu X, Wang T, Huang S, Zeng P. Evaluation of the causal effects of blood lipid levels on gout with summary level GWAS data: two-sample Mendelian randomization and mediation analysis. J Hum Genet. 2021;66(5):465–73.

  50. McCormick N, O'Connor MJ, Yokose C, Merriman TR, Mount DB, Leong A, Choi HK. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis & Rheumatol [In Press]. Accepted 2021 April 2.

  51. Ter Maaten JC, Voorburg A, Heine RJ, Ter Wee PM, Donker AJ, Gans RO. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. Clin Sci (Lond). 1997;92(1):51–8.

    Article  Google Scholar 

  52. Muscelli E, Natali A, Bianchi S, Bigazzi R, Galvan AQ, Sironi AM, et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am J Hypertens. 1996;9(8):746–52.

    Article  CAS  PubMed  Google Scholar 

  53. Facchini F, Chen YD, Hollenbeck CB, Reaven GM. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991;266(21):3008–11.

    Article  CAS  PubMed  Google Scholar 

  54. Dessein PH, Shipton EA, Stanwix AE, Joffe BI, Ramokgadi J. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann Rheum Dis. 2000;59(7):539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998;57(9):509–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mount DB, Merriman TR, Mandal A. Insulin: genetic and physiological influences on human uric acid homeostasis [abstract]. Arthritis Rheumatol. 2018;70 (suppl 10). https://acrabstracts.org/abstract/insulin-genetic-and-physiological-influences-on-human-uric-acidhomeostasis/. Accessed May 7, 2021.

  57. Toyoki D, Shibata S, Kuribayashi-Okuma E, Xu N, Ishizawa K, Hosoyamada M, et al. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol. 2017;313(3):F826–F34.

    Article  CAS  PubMed  Google Scholar 

  58. Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51(10):1459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richardson TG, Harrison S, Hemani G, Davey SG. An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. Elife. 2019;8. https://doi.org/10.7554/eLife.43657.

  60. Young LR, Nestle M. The contribution of expanding portion sizes to the US obesity epidemic. Am J Public Health. 2002;92(2):246–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25.

    Article  PubMed  Google Scholar 

  62. Hu FB. Genetic predictors of obesity. In: Hu BF, editor. Obesity Epidemiology. New York City: Oxford University Press; 2008.

  63. •• Choi HK, McCormick N, Lu N, Rai SK, Yokose C, Zhang Y. Population impact attributable to modifiable risk factors for hyperuricemia. Arthritis Rheumatol. 2020;72(1):157–65. An analysis of the National Health and Nutrition Examination Survey which found a substantial proportion of hyperuricemia cases in the USA could be attributed to four modifiable risk factors for gout (BMI, DASH Diet, alcohol use, and diuretic use).

  64. Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013;9(1):13–27.

    Article  PubMed  Google Scholar 

  65. Hwang J, Lee MY, Ahn JK, Cha HS. Relationship between changing the body mass index and serum uric acid alteration among clinically apparently healthy Korean men. Arthritis Care Res. 2021. https://doi.org/10.1002/acr.24576.

  66. Bai L, Zhou JB, Zhou T, Newson RB, Cardoso MA. Incident gout and weight change patterns: a retrospective cohort study of US adults. Arthritis Res Ther. 2021;23(1):69.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• McCormick N, Rai SK, Lu N, Yokose C, Curhan GC, Choi HK. Estimation of primary prevention of gout in men through modification of obesity and other key lifestyle factors. JAMA Netw Open. 2020;3(11):e2027421. An analysis of incident gout cases in the Health Professionals Follow-Up Study which reported that the majority of incident gout cases could theoretically be prevented by addressing four modifiable risk factors for gout (BMI, diet, alcohol use, and diuretic use).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Saag KG, Choi H. Epidemiology, risk factors, and lifestyle modifications for gout. Arthritis Res Ther. 2006;8 Suppl 1:S2.

    Article  PubMed  Google Scholar 

  69. Bieber JD, Terkeltaub RA. Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum. 2004;50(8):2400–14.

    Article  PubMed  Google Scholar 

  70. Roddy E, Choi HK. Epidemiology of gout. Rheum Dis Clin N Am. 2014;40(2):155–75.

    Article  Google Scholar 

  71. Fam AG. Gout, diet, and the insulin resistance syndrome. J Rheumatol. 2002;29(7):1350–5.

    CAS  PubMed  Google Scholar 

  72. Singh JA. Gout and comorbidity: a nominal group study of people with gout. Arthritis Res Ther. 2017;19(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mellen PB, Gao SK, Vitolins MZ, Goff DC Jr. Deteriorating dietary habits among adults with hypertension: DASH dietary accordance, NHANES 1988-1994 and 1999-2004. Arch Intern Med. 2008;168(3):308–14.

    Article  PubMed  Google Scholar 

  74. Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ. 2008;336(7639):309–12.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Choi HK, Willett W, Curhan G. Fructose-rich beverages and risk of gout in women. JAMA. 2010;304(20):2270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2960–84.

    Article  PubMed  Google Scholar 

  77. Hayashi H, Nagasaka S, Ishikawa S, Kawakami A, Rokkaku K, Nakamura T, et al. Contribution of a missense mutation (Trp64Arg) in beta3-adrenergic receptor gene to multiple risk factors in Japanese men with hyperuricemia. Endocr J. 1998;45(6):779–84.

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol. 2015;66(14):1538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guasch-Ferre M, Babio N, Martinez-Gonzalez MA, Corella D, Ros E, Martin-Pelaez S, et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr. 2015;102(6):1563–73.

    Article  CAS  PubMed  Google Scholar 

  80. Beulen Y, Martinez-Gonzalez MA, van de Rest O, Salas-Salvado J, Sorli JV, Gomez-Gracia E, et al. Quality of dietary fat intake and body weight and obesity in a Mediterranean population: secondary analyses within the PREDIMED trial. Nutrients. 2018;10(12). https://doi.org/10.3390/nu10122011.

  81. Drouin-Chartier JP, Zheng Y, Li Y, Malik V, Pan A, Bhupathiraju SN, et al. Changes in consumption of sugary beverages and artificially sweetened beverages and subsequent risk of type 2 diabetes: results from three large prospective U.S. cohorts of women and men. Diabetes Care. 2019;42(12):2181–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wurtz AML, Jakobsen MU, Bertoia ML, Hou T, Schmidt EB, Willett WC, et al. Replacing the consumption of red meat with other major dietary protein sources and risk of type 2 diabetes mellitus: a prospective cohort study. Am J Clin Nutr. 2021;113(3):612–21.

    Article  PubMed  Google Scholar 

  83. Becerra-Tomas N, Babio N, Martinez-Gonzalez MA, Corella D, Estruch R, Ros E, et al. Replacing red meat and processed red meat for white meat, fish, legumes or eggs is associated with lower risk of incidence of metabolic syndrome. Clin Nutr. 2016;35(6):1442–9.

    Article  PubMed  Google Scholar 

  84. Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation. 2009;119(8):1093–100.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6.

    Article  CAS  PubMed  Google Scholar 

  86. Serrano-Martinez M, Palacios M, Martinez-Losa E, Lezaun R, Maravi C, Prado M, et al. A Mediterranean dietary style influences TNF-alpha and VCAM-1 coronary blood levels in unstable angina patients. Eur J Nutr. 2005;44(6):348–54.

    Article  CAS  PubMed  Google Scholar 

  87. Dai J, Miller AH, Bremner JD, Goldberg J, Jones L, Shallenberger L, et al. Adherence to the Mediterranean diet is inversely associated with circulating interleukin-6 among middle-aged men: a twin study. Circulation. 2008;117(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  88. Mantzoros CS, Williams CJ, Manson JE, Meigs JB, Hu FB. Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am J Clin Nutr. 2006;84(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  89. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

    Article  CAS  PubMed  Google Scholar 

  90. Filippatos TD, Panagiotakos DB, Georgousopoulou EN, Pitaraki E, Kouli GM, Chrysohoou C, et al. Mediterranean Diet and 10-year (2002-2012) Incidence of diabetes and cardiovascular disease in participants with prediabetes: the ATTICA study. Rev Diabet Stud. 2016;13(4):226–35.

    Article  PubMed  Google Scholar 

  91. Buckland G, Gonzalez CA, Agudo A, Vilardell M, Berenguer A, Amiano P, et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC Cohort Study. Am J Epidemiol. 2009;170(12):1518–29.

    Article  PubMed  Google Scholar 

  92. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.

    Article  PubMed  Google Scholar 

  93. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, et al. Changes in diet quality scores and risk of cardiovascular disease among US men and women. Circulation. 2015;132(23):2212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, et al. Association of changes in diet quality with total and cause-specific mortality. N Engl J Med. 2017;377(2):143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  95. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9.

    Article  PubMed  Google Scholar 

  96. Salas-Salvado J, Bullo M, Babio N, Martinez-Gonzalez MA, Ibarrola-Jurado N, Basora J, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34(1):14–9.

    Article  PubMed  Google Scholar 

  97. de Koning L, Chiuve SE, Fung TT, Willett WC, Rimm EB, Hu FB. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care. 2011;34(5):1150–6.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guasch-Ferre M, Bullo M, Babio N, Martinez-Gonzalez MA, Estruch R, Covas MI, et al. Mediterranean diet and risk of hyperuricemia in elderly participants at high cardiovascular risk. J Gerontol A Biol Sci Med Sci. 2013;68(10):1263–70.

    Article  CAS  PubMed  Google Scholar 

  99. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41.

    Article  CAS  PubMed  Google Scholar 

  100. •• Yokose C, McCormick N, Rai SK, Lu N, Curhan G, Schwarzfuchs D, et al. Effects of low-fat, mediterranean, or low-carbohydrate weight loss diets on serum urate and cardiometabolic risk factors: a secondary analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care. 2020;43(11):2812–20. A secondary analysis of a randomized diet interventional trial which found that low-fat, low-carbohydrate, and Mediterranean diets could all resume serum urate levels similarly, particularly among those with baseline hyperuricemia.

  101. Keller S, Rai SK, Lu L, Zhang Y, Choi HK. The Dietary Approaches to Stop Hypertension (DASH) and mediterranean diets and risk of gout in women: 28-year follow-up of a prospective cohort [abstract]. Arthritis Rheumatol. 2017;69(suppl 10). https://acrabstracts.org/abstract/the-dietaryapproaches-to-stop-hypertension-dash-and-mediterranean-diets-and-risk-of-gout-in-women-28-yearfollow-up-of-a-prospective-cohort/. Accessed May 7, 2021.

  102. • Juraschek SP, Yokose C, McCormick N, Miller ER 3rd, Appel LJ, Choi HK. Effects of dietary patterns on serum urate: results from the DASH randomized trial. Arthritis Rheumatol. 2020. https://doi.org/10.1002/art.41614. A secondary analysis of a controlled feeding DASH trial which found that DASH diet could reduce serum urate levels, particularly among those with baseline hyperuricemia.

  103. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.

    Article  CAS  PubMed  Google Scholar 

  104. Obarzanek E, Sacks FM, Vollmer WM, Bray GA, Miller ER 3rd, Lin PH, et al. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr. 2001;74(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  105. Juraschek SP, Gelber AC, Choi HK, Appel LJ, Miller ER 3rd. Effects of the Dietary Approaches to Stop Hypertension (DASH) diet and sodium intake on serum uric acid. Arthritis Rheumatol. 2016;68(12):3002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  107. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64.

    Article  CAS  PubMed  Google Scholar 

  108. Belanger MJ, Wee CC, Mukamal KJ, Miller ER, Sacks FM, Appel LJ, et al. Effects of dietary macronutrients on serum urate: results from the OmniHeart trial. Am J Clin Nutr. 2021. https://doi.org/10.1093/ajcn/nqaa424.

  109. Juraschek SP, McAdams-Demarco M, Gelber AC, Sacks FM, Appel LJ, White KJ, et al. Effects of lowering glycemic index of dietary carbohydrate on plasma uric acid levels: the OmniCarb randomized clinical trial. Arthritis Rheumatol. 2016;68(5):1281–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, et al. Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. JAMA. 2003;289(16):2083–93.

    PubMed  Google Scholar 

  111. Maruthur NM, Wang NY, Appel LJ. Lifestyle interventions reduce coronary heart disease risk: results from the PREMIER Trial. Circulation. 2009;119(15):2026–31.

    Article  PubMed  PubMed Central  Google Scholar 

  112. • Juraschek SP, Miller ER 3rd, Wu B, White K, Charleston J, Gelber AC, et al. A randomized pilot study of DASH patterned groceries on serum urate in individuals with gout. Nutrients. 2021;13(2):538. https://doi.org/10.3390/nu13020538. A pragmatic design randomized, controlled, crossover pilot study which studied the impact of dietician-directed DASH-style grocery delivery compared to self-directed grocery shopping and found that the DASH-style grocery delivery was associated with a serum urate reduction during the pre-crossover period.

  113. Sacks FM, Campos H. Dietary therapy in hypertension. N Engl J Med. 2010;362(22):2102–12.

    Article  CAS  PubMed  Google Scholar 

  114. Djousse L, Ho YL, Nguyen XT, Gagnon DR, Wilson PWF, Cho K, et al. DASH Score and subsequent risk of coronary artery disease: the findings from Million Veteran Program. J Am Heart Assoc. 2018;7(9). https://doi.org/10.1161/JAHA.117.008089.

  115. Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20.

    Article  PubMed  Google Scholar 

  116. Liese AD, Nichols M, Sun X, D’Agostino RB Jr, Haffner SM. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8):1434–6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mokhtari Z, Sharafkhah M, Poustchi H, Sepanlou SG, Khoshnia M, Gharavi A, et al. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and risk of total and cause-specific mortality: results from the Golestan Cohort Study. Int J Epidemiol. 2019;48(6):1824–38.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Parikh A, Lipsitz SR, Natarajan S. Association between a DASH-like diet and mortality in adults with hypertension: findings from a population-based follow-up study. Am J Hypertens. 2009;22(4):409–16.

    Article  PubMed  Google Scholar 

  119. Park YM, Fung TT, Steck SE, Zhang J, Hazlett LJ, Han K, et al. Diet quality and mortality risk in metabolically obese normal-weight adults. Mayo Clin Proc. 2016;91(10):1372–83.

    Article  PubMed  Google Scholar 

  120. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 2012;125(7):679–87 e1.

    Article  PubMed  Google Scholar 

  121. Rai SK, Fung TT, Lu N, Keller SF, Curhan GC, Choi HK. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: prospective cohort study. BMJ. 2017;357:j1794.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhu Y, Zhang Y, Choi HK. The serum urate-lowering impact of weight loss among men with a high cardiovascular risk profile: the Multiple Risk Factor Intervention Trial. Rheumatology (Oxford). 2010;49(12):2391–9.

    Article  CAS  Google Scholar 

  123. Nguyen UD, Zhang Y, Louie-Gao Q, Niu J, Felson DT, LaValley MP, et al. Obesity paradox in recurrent attacks of gout in observational studies: clarification and remedy. Arthritis Care Res. 2017;69(4):561–6.

    Article  Google Scholar 

  124. Davey Smith G, Bracha Y, Svendsen KH, Neaton JD, Haffner SM, Kuller LH, et al. Incidence of type 2 diabetes in the randomized multiple risk factor intervention trial. Ann Intern Med. 2005;142(5):313–22.

    Article  PubMed  Google Scholar 

  125. Dalbeth N, Chen P, White M, Gamble GD, Barratt-Boyes C, Gow PJ, et al. Impact of bariatric surgery on serum urate targets in people with morbid obesity and diabetes: a prospective longitudinal study. Ann Rheum Dis. 2014;73(5):797–802.

    Article  CAS  PubMed  Google Scholar 

  126. Romero-Talamas H, Daigle CR, Aminian A, Corcelles R, Brethauer SA, Schauer PR. The effect of bariatric surgery on gout: a comparative study. Surg Obes Relat Dis. 2014;10(6):1161–5.

    Article  PubMed  Google Scholar 

  127. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  128. Maglio C, Peltonen M, Neovius M, Jacobson P, Jacobsson L, Rudin A, et al. Effects of bariatric surgery on gout incidence in the Swedish Obese Subjects study: a non-randomised, prospective, controlled intervention trial. Ann Rheum Dis. 2017;76(4):688–93.

    Article  PubMed  Google Scholar 

  129. Lu J, Bai Z, Chen Y, Li Y, Tang M, Wang N, et al. Effects of bariatric surgery on serum uric acid in people with obesity with or without hyperuricaemia and gout: a retrospective analysis. Rheumatology (Oxford). 2021. https://doi.org/10.1093/rheumatology/keaa822.

  130. Zobbe K, Christensen R, Nielsen S, Stamp L, Henriksen M, Overgaard A, Dreyer L, Knop F, Singh J, Doherty M, Richette P, Astrup A, Ellegaard K, Bartels E, Boesen M, Gudbergsen H, Bliddal H, Kristensen L. Weight Loss as treatment for gout in patients with concomitant obesity: a proof-of-concept randomized controlled trial [abstract]. Arthritis Rheumatol. 2020;72(suppl 10). https://acrabstracts.org/abstract/weight-loss-as-treatment-for-gout-in-patients-with-concomitant-obesity-aproof-of-concept-randomized-controlled-trial/. Accessed May 7, 2021.

  131. Williams PT. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am J Clin Nutr. 2008;87(5):1480–7.

    Article  CAS  PubMed  Google Scholar 

  132. Park DY, Kim YS, Ryu SH, Jin YS. The association between sedentary behavior, physical activity and hyperuricemia. Vasc Health Risk Manag. 2019;15:291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dong X, Li Y, Zhang L, Liu X, Tu R, Wang Y, et al. Independent and interactive effect of sitting time and physical activity on prevalence of hyperuricemia: the Henan Rural Cohort Study. Arthritis Res Ther. 2021;23(1):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen JH, Wen CP, Wu SB, Lan JL, Tsai MK, Tai YP, et al. Attenuating the mortality risk of high serum uric acid: the role of physical activity underused. Ann Rheum Dis. 2015;74(11):2034–42.

    Article  CAS  PubMed  Google Scholar 

  135. Jablonski K, Young NA, Henry C, Caution K, Kalyanasundaram A, Okafor I, et al. Physical activity prevents acute inflammation in a gout model by downregulation of TLR2 on circulating neutrophils as well as inhibition of serum CXCL1 and is associated with decreased pain and inflammation in gout patients. PLoS One. 2020;15(10):e0237520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Chen C, Choi H, Chaisson C, Hunter D, Niu J, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53.

    Article  CAS  PubMed  Google Scholar 

  137. Neogi T, Chen C, Niu J, Chaisson C, Hunter DJ, Zhang Y. Alcohol quantity and type on risk of recurrent gout attacks: an internet-based case-crossover study. Am J Med. 2014;127(4):311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet. 2004;363(9417):1277–81.

    Article  PubMed  Google Scholar 

  139. Choi HK, Curhan G. Beer, liquor, and wine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2004;51(6):1023–9.

    Article  PubMed  Google Scholar 

  140. Gepner Y, Golan R, Harman-Boehm I, Henkin Y, Schwarzfuchs D, Shelef I, et al. Effects of initiating moderate alcohol intake on cardiometabolic risk in adults with type 2 diabetes: a 2-year randomized, controlled trial. Ann Intern Med. 2015;163(8):569–79.

    Article  PubMed  Google Scholar 

  141. Nicolaidis S. Environment and obesity. Metabolism. 2019;100S:153942.

    Article  PubMed  Google Scholar 

  142. Mozaffarian D, Angell SY, Lang T, Rivera JA. Role of government policy in nutrition-barriers to and opportunities for healthier eating. BMJ. 2018;361:k2426.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Robinson P, Dalbeth N, Frampton C, Merriman T, Phipps-Green A, Donovan P. A sugar tax results in reduced incident gout, quality adjusted life years lost and economic cost from gout: a health economic analysis [abstract]. Arthritis Rheumatol. 2020;72(suppl 10). https://acrabstracts.org/abstract/a-sugar-tax-results-in-reduced-incident-gout-quality-adjusted-life-yearslost-and-economic-cost-from-gout-a-health-economic-analysis/. Accessed May 7, 2021.

  144. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382(26):2504–13.

    Article  CAS  PubMed  Google Scholar 

  145. Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382(26):2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gonzalez-Martin G, Cano J, Carriazo S, Kanbay M, Perez-Gomez MV, Fernandez-Prado R, et al. The dirty little secret of urate-lowering therapy: useless to stop chronic kidney disease progression and may increase mortality. Clin Kidney J. 2020;13(6):936–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McCormick N, Zhang Y, Choi HK. Allopurinol and chronic kidney disease. N Engl J Med. 2020;383(17):1689–90.

    PubMed  Google Scholar 

Download references

Funding

C. Y. is supported by T32 AR007258 and Rheumatology Research Foundation Scientist Development Award. N. M. is supported by a Fellowship Award from the Canadian Institutes of Health Research. H. C. is supported by R01 AR065944, P50 AR060772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chio Yokose.

Ethics declarations

Conflict of Interest

C. Y. and N. M. have no disclosures. H. C. reports consulting fees from Ironwood, Selecta, Horizon, Takeda, Kowa, and Vaxart and research support from Ironwood and Horizon.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokose, C., McCormick, N. & Choi, H.K. Dietary and Lifestyle-Centered Approach in Gout Care and Prevention. Curr Rheumatol Rep 23, 51 (2021). https://doi.org/10.1007/s11926-021-01020-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-01020-y

Keywords

Navigation