Skip to main content

Advertisement

Log in

Intersections Between Mitochondrial Metabolism and Redox Biology Mediate Posttraumatic Osteoarthritis

  • Osteoarthritis (MB Goldring and T Griffin, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will cover foundational studies and recent findings that established key concepts for understanding the importance of redox biology to chondrocyte mitochondrial function and osteoarthritis pathophysiology after injury.

Recent Findings

Articular chondrocyte mitochondria can be protected with a wide variety of antioxidants that will be discussed within a framework suggested by classic studies. These agents not only underscore the importance of thiol metabolism and associated redox function for chondrocyte mitochondria but also suggest complex interactions with signal transduction pathways and other molecular features of osteoarthritis that require more thorough investigation. Emerging evidence also indicates that reductive stress could occur alongside oxidative stress.

Summary

Recent studies have shed new light on historic paradoxes in chondrocyte redox and mitochondrial physiology, leading to the development of promising disease-modifying therapies for posttraumatic osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  PubMed  Google Scholar 

  2. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  3. Onyekwelu I, Goldring MB, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem. 2009;107(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  4. Lin Z, Willers C, Xu J, Zheng MH. The chondrocyte: biology and clinical application. Tissue Eng. 2006;12(7):1971–84.

    Article  CAS  PubMed  Google Scholar 

  5. Hunziker EB, Schenk RK, Cruz-Orive LM. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987;69(2):162–73.

    Article  CAS  PubMed  Google Scholar 

  6. Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil. 2007;15(4):403–13.

    Article  CAS  Google Scholar 

  7. Archer CW, Francis-West P. The chondrocyte. Int J Biochem Cell Biol. 2003;35(4):401–4.

    Article  CAS  PubMed  Google Scholar 

  8. Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  9. Eggli PS, Herrmann W, Hunziker EB, Schenk RK. Matrix compartments in the growth plate of the proximal tibia of rats. Anat Rec. 1985;211(3):246–57.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent TL. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol. 2013;13(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  11. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998; 47:477–86

  12. Lohmander S. Proteoglycans of joint cartilage. Structure, function, turnover and role as markers of joint disease. Baillieres Clin Rheumatol. 1988;2(1):37–62.

    Article  CAS  PubMed  Google Scholar 

  13. Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen Zur Funktion. Zweiter Teil: der Aufbau des Gelenkknorpels in sienen Bezienhungen zur Funktion., (2) (1925) 783-862.

  14. Guilak F, Alexopoulos LG, Upton ML, Youn I, Choi JB, Cao L, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann N Y Acad Sci. 2006;1068:498–512.

    Article  CAS  PubMed  Google Scholar 

  15. Youn I, Choi JB, Cao L, Setton LA, Guilak F. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthr Cartil. 2006;14(9):889–97.

    Article  CAS  Google Scholar 

  16. Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12(2):69–78.

    Article  CAS  PubMed  Google Scholar 

  17. Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol. 2019;165:49–65.

    Article  PubMed  Google Scholar 

  18. Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol. 2006;20(5):1003–25.

    Article  CAS  PubMed  Google Scholar 

  19. Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35(10):1756–69.

    Article  PubMed  Google Scholar 

  20. Buckwalter JA. Articular cartilage. Instr Course Lect. 1983;32:349–70.

    CAS  PubMed  Google Scholar 

  21. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Freemont AJ. Microscopic analysis of synovial fluid—the perfect diagnostic test? Ann Rheum Dis. 1996;55(10):695–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maroudas A, Bullough P, Swanson SA, Freeman MA. The permeability of articular cartilage. J Bone Joint Surg (Br). 1968;50(1):166–77.

    Article  CAS  Google Scholar 

  24. Maroudas A. Distribution and diffusion of solutes in articular cartilage. Biophys J. 1970;10(5):365–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mobasheri A. Glucose: an energy currency and structural precursor in articular cartilage and bone with emerging roles as an extracellular signaling molecule and metabolic regulator. Front Endocrinol (Lausanne). 2012;3:153.

    Article  Google Scholar 

  26. Clark AG, Rohrbaugh AL, Otterness I, Kraus VB. The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants. Matrix Biol. 2002;21(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  27. Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF, Arteaga MF, et al. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol Histopathol. 2002;17(4):1239–67.

    CAS  PubMed  Google Scholar 

  28. Zhang W, Likhodii S, Aref-Eshghi E, Zhang Y, Harper PE, Randell E, et al. Relationship between blood plasma and synovial fluid metabolite concentrations in patients with osteoarthritis. J Rheumatol. 2015;42(5):859–65.

    Article  CAS  PubMed  Google Scholar 

  29. Mobasheri A, Neama G, Bell S, Richardson S, Carter SD. Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int. 2002;26(3):297–300.

    Article  CAS  PubMed  Google Scholar 

  30. Heywood HK, Knight MM, Lee DA. Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates. J Cell Physiol. 2010;223(3):630–9.

    CAS  PubMed  Google Scholar 

  31. Blanco FJ, López-Armada MJ, Maneiro E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion. 2004;4(5-6):715–28.

    Article  CAS  PubMed  Google Scholar 

  32. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  33. Lee RB, Urban JP. Evidence for a negative Pasteur effect in articular cartilage. Biochem J. 1997;321(Pt 1):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol. 2001;18(4):247–56.

    Article  CAS  PubMed  Google Scholar 

  35. Rosa SC, Gonçalves J, Judas F, Mobasheri A, Lopes C, Mendes AF. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res Ther. 2009;11(3):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang J, Zhou J, Bondy CA. Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB J. 1999;13(14):1985–90.

    Article  CAS  PubMed  Google Scholar 

  37. Peansukmanee S, Vaughan-Thomas A, Carter SD, Clegg PD, Taylor S, Redmond C, et al. Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo. J Orthop Res. 2009;27(4):529–35.

    Article  CAS  PubMed  Google Scholar 

  38. Marcus RE. The effect of low oxygen concentration on growth, glycolysis, and sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum. 1973;16(5):646–56.

    Article  CAS  PubMed  Google Scholar 

  39. Lee RB, Urban JP. Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum. 2002;46(12):3190–200.

    Article  CAS  PubMed  Google Scholar 

  40. Lee RB, Wilkins RJ, Razaq S, Urban JP. The effect of mechanical stress on cartilage energy metabolism. Biorheology. 2002;39(1-2):133–43.

    CAS  PubMed  Google Scholar 

  41. Johnson K, Jung A, Murphy A, Andreyev A, Dykens J, Terkeltaub R. Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum. 2000;43(7):1560–70.

    Article  CAS  PubMed  Google Scholar 

  42. Guri CD, Bernstein DS. Rat epiphyseal cartilage. V. Glucose-C14 metabolism as related to growth and to various anatomical areas, in vitro. Proc Soc Exp Biol Med. 1967;124(2):386–91.

    Article  CAS  PubMed  Google Scholar 

  43. Stockwell RA. Metabolism of cartilage. In: Hall BK, editor. Cartilage, structure, function, and biochemistry. New York: New York Academic Press; 1983. p. 253–80.

    Google Scholar 

  44. Grimshaw MJ, Mason RM. Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthr Cartil. 2001;9(4):357–64.

    Article  CAS  Google Scholar 

  45. Wolff KJ, Ramakrishnan PS, Brouillette MJ, Journot BJ, McKinley TO, Buckwalter JA, et al. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res. 2013;31(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  46. Martin JA, Martini A, Molinari A, Morgan W, Ramalingam W, Buckwalter JA, et al. Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthr Cartil. 2012;20(4):323–9.

    Article  CAS  Google Scholar 

  47. Ohashi T, Hagiwara M, Bader DL, Knight MM. Intracellular mechanics and mechanotransduction associated with chondrocyte deformation during pipette aspiration. Biorheology. 2006;43(3,4):201–14.

    CAS  PubMed  Google Scholar 

  48. Lv M, Zhou Y, Chen X, Han L, Wang L, Lu XL. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: roles of calcium sources and cell membrane ion channels. J Orthop Res. 2018;36(2):730–8.

    Article  CAS  PubMed  Google Scholar 

  49. Lee W, Guilak F, Liedtke W. Role of piezo channels in joint health and injury. Curr Top Membr. 2017;79:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grandolfo M, Calabrese A, D’Andrea P. Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells. J Bone Miner Res. 1998;13(3):443–53.

    Article  CAS  PubMed  Google Scholar 

  51. Raizman I, De Croos JN, Pilliar R, Kandel RA. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation. Cell Calcium. 2010;48(4):232–42.

    Article  CAS  PubMed  Google Scholar 

  52. Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, et al. Type VI collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage. Arthritis Rheum. 2015;67(5):1286–94.

    Article  CAS  Google Scholar 

  53. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res. 2002;20(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  54. Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum. 2010;62(10):2973–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sánchez JC, López-Zapata DF, Wilkins RJ. TRPV4 channels activity in bovine articular chondrocytes: regulation by obesity-associated mediators. Cell Calcium. 2014;56(6):493–503.

    Article  PubMed  Google Scholar 

  56. Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 2009;60(10):3028–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buckwalter JA, Mower D, Ungar R, Schaeffer J, Ginsberg B. Morphometric analysis of chondrocyte hypertrophy. J Bone Joint Surg Am. 1986;68(2):243–55.

    Article  CAS  PubMed  Google Scholar 

  58. Mignotte F, Champagne AM, Froger-Gaillard B, Benel L, Gueride M, Adolphe M, et al. Mitochondrial biogenesis in rabbit articular chondrocytes transferred to culture. Biol Cell. 1991;71(1-2):67–72.

    Article  CAS  PubMed  Google Scholar 

  59. Brighton CT, Kitajima T, Hunt RM. Zonal analysis of cytoplasmic components of articular cartilage chondrocytes. Arthritis Rheum. 1984;27(11):1290–9.

    Article  CAS  PubMed  Google Scholar 

  60. Zhou S, Cui Z, Urban JP. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 2004;50(12):3915–24.

    Article  PubMed  Google Scholar 

  61. Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB. Oxygen, nitric oxide and articular cartilage. Eur Cell Mater. 2007;13:56–65 discussion 65.

    Article  CAS  PubMed  Google Scholar 

  62. Krebs HA. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 1972;8:1–34.

    CAS  PubMed  Google Scholar 

  63. Sampson HW, Cannon MS. Zonal analysis of metabolic profiles of articular-epiphyseal cartilage chondrocytes: a histochemical study. Histochem J. 1986;18(5):233–8.

    Article  CAS  PubMed  Google Scholar 

  64. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal. 2014;20(10):1618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, et al. LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun. 2020;11(1):3427.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab. 2015;22(2):204–6.

    Article  CAS  PubMed  Google Scholar 

  68. Tielens AG, Rotte C, van Hellemond JJ, Martin W. Mitochondria as we don’t know them. Trends Biochem Sci. 2002;27(11):564–72.

    Article  CAS  PubMed  Google Scholar 

  69. Delco ML, Bonnevie ED, Bonassar LJ, Fortier LA. Mitochondrial dysfunction is an acute response of articular chondrocytes to mechanical injury. J Orthop Res. 2018;36(2):739–50.

    CAS  PubMed  Google Scholar 

  70. Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious loading of articular cartilage compromises chondrocyte respiratory function. Arthritis Rheum. 2016;68(3):662–71.

    Article  CAS  Google Scholar 

  71. Halliwell B. Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 2003;540(1-3):3–6.

    Article  CAS  PubMed  Google Scholar 

  72. Packer L, Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977;267(5610):423–5.

    Article  CAS  PubMed  Google Scholar 

  73. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993;300(2):535–43.

    Article  CAS  PubMed  Google Scholar 

  74. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, et al. Rotenone prevents impact-induced chondrocyte death. J Orthop Res. 2010;28(8):1057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brouillette MJ, Ramakrishnan PS, Wagner VM, Sauter EE, Journot BJ, McKinley TO, et al. Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol. 2014;13(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  76. Ferreira R, Llesuy S, Milei J, Scordo D, Hourquebie H, Molteni L, et al. Assessment of myocardial oxidative stress in patients after myocardial revascularization. Am Heart J. 1988;115(2):307–12.

    Article  CAS  PubMed  Google Scholar 

  77. Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41(8):1338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coleman MC, Brouillette MJ, Andresen NS, Oberley-Deegan RE, Martin JM. Differential effects of superoxide dismutase mimetics after mechanical overload of articular cartilage. Antioxidants (Basel). 2017;6(4):98.

  79. Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med. 2018;10(427):eaan5372.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Vaillancourt F, Fahmi H, Shi Q, Lavigne P, Ranger P, Fernandes JC, et al. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther. 2008;10(5):R107.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Carlo MD, Loeser RF. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 2003;48(12):3419–30.

    Article  PubMed  Google Scholar 

  83. Goetz JE, Coleman MC, Fredericks DC, Petersen E, Martin JA, McKinley TO, et al. Time-dependent loss of mitochondrial function precedes progressive histologic cartilage degeneration in a rabbit meniscal destabilization model. J Orthop Res. 2017;35(3):590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Moussavi-Harami SF, Pedersen DR, Martin JA, Hillis SL, Brown TD. Automated objective scoring of histologically apparent cartilage degeneration using a custom image analysis program. J Orthop Res. 2009;27(4):522–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pedersen DR, Goetz JE, Kurriger GL, Martin JA. Comparative digital cartilage histology for human and common osteoarthritis models. Orthop Res Rev. 2013;2013(5):13–20.

    PubMed  PubMed Central  Google Scholar 

  86. Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, et al. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthr Cartil. 2015;23(10):1797–805.

    Article  CAS  Google Scholar 

  87. Huser CA, Davies ME. Calcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explants. Arthritis Rheum. 2007;56(7):2322–34.

    Article  CAS  PubMed  Google Scholar 

  88. Abusara Z, Von Kossel M, Herzog W. In vivo dynamic deformation of articular cartilage in intact joints loaded by controlled muscular contractions. PLoS One. 2016;11(1):e0147547.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Han SK, Ronkainen AP, Saarakkala S, Rieppo L, Herzog W, Korhonen RK. Alterations in structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9 weeks after anterior cruciate ligament transection. J Orthop Res. 2018;36(1):342–50.

    CAS  PubMed  Google Scholar 

  90. Collins JA, Wood ST, Bolduc JA, Nurmalasari NPD, Chubinskaya S, Poole LB, et al. Differential peroxiredoxin hyperoxidation regulates MAP kinase signaling in human articular chondrocytes. Free Radic Biol Med. 2019;134:139–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Delco ML, Bonnevie ED, Szeto HS, Bonassar LJ, Fortier LA. Mitoprotective therapy preserves chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic osteoarthritis. J Orthop Res. 2018;36:2147–56.

    Article  CAS  Google Scholar 

  92. López de Figueroa P, Lotz MK, Blanco FJ, Caramés B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheum. 2015;67(4):966–76.

    Article  Google Scholar 

  93. Ansari MY, Ball HC, Wase SJ, Novak K, Haqqi TM. Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of cytochrome c. Osteoarthr Cartil. 2020;28:S67.

    Article  Google Scholar 

  94. Ansari MY, Ahmad N, Voleti S, Wase SJ, Novak K, Haqqi TM. Mitochondrial dysfunction triggers a catabolic response in chondrocytes via ROS-mediated activation of the JNK/AP1 pathway. J Cell Sci. 2020;133(22):jcs247353.

    Article  CAS  PubMed  Google Scholar 

  95. Vaamonde-García C, Loureiro J, Valcárcel-Ares MN, Riveiro-Naveira RR, Ramil-Gómez O, Hermida-Carballo L, et al. The mitochondrial inhibitor oligomycin induces an inflammatory response in the rat knee joint. BMC Musculoskelet Disord. 2017;18(1):254.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Vaamonde-García C, Riveiro-Naveira RR, Valcárcel-Ares MN, Hermida-Carballo L, Blanco FJ, López-Armada MJ. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 2012;64(9):2927–36.

    Article  PubMed  Google Scholar 

  97. Cillero-Pastor B, Caramés B, Lires-Deán M, Vaamonde-García C, Blanco FJ, López-Armada MJ. Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum. 2008;58(8):2409–19.

    Article  CAS  PubMed  Google Scholar 

  98. Blanco FJ, June RK. Cartilage metabolism, mitochondria, and osteoarthritis. J Am Acad Orthop Surg. 2020;28(6):e242–4.

    Article  PubMed  Google Scholar 

  99. Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011;7(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  100. Wu L, Liu H, Li L, Cheng Q, Li H, Huang H. Mitochondrial pathology in osteoarthritic chondrocytes. Curr Drug Targets. 2014;15(7):710–9.

    Article  CAS  PubMed  Google Scholar 

  101. Canter PH, Wider B, Ernst E. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford). 2007;46(8):1223–33.

    Article  CAS  Google Scholar 

  102. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36(10):1199–207.

    Article  CAS  PubMed  Google Scholar 

  103. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991;266(18):11632–9.

    Article  CAS  PubMed  Google Scholar 

  104. Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J Biol Chem. 2005;280(17):16891–900.

    Article  CAS  PubMed  Google Scholar 

  105. Davidson RK, Jupp O, de Ferrars R, Kay CD, Culley KL, Norton R, et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum. 2013;65(12):3130–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Khan NM, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med. 2017;106:288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mével E, Merceron C, Vinatier C, Krisa S, Richard T, Masson M, et al. Olive and grape seed extract prevents post-traumatic osteoarthritis damages and exhibits in vitro anti IL-1β activities before and after oral consumption. Sci Rep. 2016;6:33527.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang A, Leong DJ, He Z, Xu L, Liu L, Kim SJ, et al. Procyanidins mitigate osteoarthritis pathogenesis by, at least in part, suppressing vascular endothelial growth factor signaling. Int J Mol Sci. 2016 Dec 9;17(12):2065.

  109. Basu A, Schell J, Scofield RH. Dietary fruits and arthritis. Food Funct. 2018;9(1):70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Leong DJ, Choudhury M, Hanstein R, Hirsh DM, Kim SJ, Majeska RJ, et al. Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse post-traumatic osteoarthritis model. Arthritis Res Ther. 2014;16(6):508.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Vaamonde-García C, Burguera EF, Vela-Anero Á, Hermida-Gómez T, Filgueira-Fernández P, Fernández-Rodríguez JA, et al. Intraarticular administration effect of hydrogen sulfide on an in vivo rat model of osteoarthritis. Int J Mol Sci. 2020 Oct 8;21(19):7421.

  112. O'Grady KP, Kavanaugh TE, Cho H, Ye H, Gupta MK, Madonna MC, et al. Drug-free ROS sponge polymeric microspheres reduce tissue damage from ischemic and mechanical injury. ACS Biomater Sci Eng. 2018;4(4):1251–64.

    Article  CAS  PubMed  Google Scholar 

  113. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576–91.

    Article  CAS  PubMed  Google Scholar 

  114. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47(9):1304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shao Z, Pan Z, Lin J, Zhao Q, Wang Y, Ni L, et al. S-allyl cysteine reduces osteoarthritis pathology in the tert-butyl hydroperoxide-treated chondrocytes and the destabilization of the medial meniscus model mice via the Nrf2 signaling pathway. Aging (Albany NY). 2020;12(19):19254–72.

    Article  CAS  Google Scholar 

  116. Yan Z, Qi W, Zhan J, Lin Z, Lin J, Xue X, et al. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J Cell Mol Med. 2020;24:13046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang J, Song X, Feng Y, Liu N, Fu Z, Wu J, et al. Natural ingredients-derived antioxidants attenuate H. Free Radic Biol Med. 2020;152:854–64.

    Article  CAS  PubMed  Google Scholar 

  118. Chen Z, Zhong H, Wei J, Lin S, Zong Z, Gong F, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis. Arthritis Res Ther. 2019;21(1):300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Khan NM, Ahmad I, Haqqi TM. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic Biol Med. 2018;116:159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang Y, Zhao X, Lotz M, Terkeltaub R, Liu-Bryan R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheum. 2015;67(8):2141–53.

    Article  CAS  Google Scholar 

  121. Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi K, et al. Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Res Ther. 2015;17:285.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell C. Coleman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Contreras, P.C., Kluz, P.N., Hines, M.R. et al. Intersections Between Mitochondrial Metabolism and Redox Biology Mediate Posttraumatic Osteoarthritis. Curr Rheumatol Rep 23, 32 (2021). https://doi.org/10.1007/s11926-021-00994-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00994-z

Keywords

Navigation