Skip to main content

Advertisement

Log in

Gut Microbiota in Lupus: a Butterfly Effect?

  • Systemic Lupus Erythematosus (G Tsokos, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease that typically displays chronic inflammatory tissue damage and miscellaneous circulatory autoantibodies, as well as distinctive type 1 interferon signatures. The etiology of SLE is unclear and currently is attributed to genetic predisposition and environmental triggers. Gut microbiota has recently been considered a critical environmental pathogenic factor in immune-related disorders, and studies are ongoing to uncover the key pathogens and the imputative mechanisms. Fundamental advancements on the role of the microbiota in SLE pathology have been achieved in recent years and are summarized in this review.

Recent Findings

Recent findings suggested that gut commensals could propagate autoimmunity via molecular mimicry in which ortholog-carrying microbes cross-activate autoreactive T/B cells and trigger the response against host autoantigens, or via bystander activation by stimulating antigen-presenting cells that present autoantigens and enhancing the expression of co-stimulatory molecules and cytokines, thus leading to the loss of self-tolerance and the production of autoantibodies. Additionally, the break of gut barrier and the translocation of gut commensals to inner organs can trigger immune dysregulation and inappropriate systemic inflammation. All these microbiota-mediated mechanisms could contribute to lupus immunopathogenesis and promote disease development in susceptible individuals.

Summary

Evidence of the causative role of disturbed gut microbiome in SLE is still limited, and the related molecular mechanisms and pathways are largely elusive. However, the modification of gut microbiota, such as pathobiont vaccine, special diet, restricted consortium transplantation, as well as regulatory metabolites supplementation, might be promising strategies for lupus prophylaxis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20. https://doi.org/10.1056/NEJMra020100.

    Article  PubMed  Google Scholar 

  2. Gremese E, Alivernini S, Ferraccioli ES, Ferraccioli G. Checkpoint inhibitors (CPI) and autoimmune chronic inflammatory diseases (ACIDs): tolerance and loss of tolerance in the occurrence of immuno-rheumatologic manifestations. Clin Immunol. 2020;214:108395. https://doi.org/10.1016/j.clim.2020.108395.

    Article  CAS  PubMed  Google Scholar 

  3. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23. https://doi.org/10.1038/nri2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. https://doi.org/10.1152/physrev.00045.2009.

    Article  CAS  PubMed  Google Scholar 

  5. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. https://doi.org/10.1126/science.1223490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11:282. https://doi.org/10.3389/fimmu.2020.00282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41. https://doi.org/10.1016/j.cell.2014.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20. https://doi.org/10.1038/cmi.2010.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Meulen TA, Harmsen HJM, Vila AV, Kurilshikov A, Liefers SC, Zhernakova A, et al. Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus. J Autoimmun. 2019;97:77–87. https://doi.org/10.1016/j.jaut.2018.10.009.

    Article  PubMed  Google Scholar 

  10. Ricciuto A, Sherman PM, Laxer RM. Gut microbiota in chronic inflammatory disorders: a focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clin Immunol. 2020;215:108415. https://doi.org/10.1016/j.clim.2020.108415.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X, Chen BD, Zhao LD, Li H. The gut microbiota: emerging evidence in autoimmune diseases. Trends Mol Med. 2020;26(9):862–73. https://doi.org/10.1016/j.molmed.2020.04.001.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. https://doi.org/10.1038/nm.3914.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun. 2020;107:102360. https://doi.org/10.1016/j.jaut.2019.102360.

    Article  CAS  PubMed  Google Scholar 

  14. •• Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, et al. The gut microbiota of non-treated patients with SLE defines an autoimmunogenic and proinflammatory profile. Arthritis Rheumatol. 2020. https://doi.org/10.1002/art.41511. This is the most recent study digging the altered gut microbiota profile in non-treated SLE patients.

  15. Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun. 2017;83:31–42. https://doi.org/10.1016/j.jaut.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  16. McLoughlin K, Schluter J, Rakoff-Nahoum S, Smith AL, Foster KR. Host selection of microbiota via differential adhesion. Cell Host Microbe. 2016;19(4):550–9. https://doi.org/10.1016/j.chom.2016.02.021.

    Article  CAS  PubMed  Google Scholar 

  17. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science. 2018;360(6390):795–800. https://doi.org/10.1126/science.aaq0926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39. https://doi.org/10.1016/j.chom.2007.09.013.

    Article  CAS  PubMed  Google Scholar 

  19. Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V, Li Z, et al. Fecal IgA levels are determined by strain-level differences in Bacteroides ovatus and are modifiable by gut microbiota manipulation. Cell Host Microbe. 2020;27(3):467–75.e6. https://doi.org/10.1016/j.chom.2020.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501(7465):112–5. https://doi.org/10.1038/nature12496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. https://doi.org/10.1038/nature12331.

    Article  CAS  PubMed  Google Scholar 

  22. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. https://doi.org/10.1126/science.1198469.

    Article  CAS  PubMed  Google Scholar 

  23. López P, González-Rodríguez I, Gueimonde M, Margolles A, Suárez A. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS One. 2011;6(9):e24776. https://doi.org/10.1371/journal.pone.0024776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity. 2011;34(5):794–806. https://doi.org/10.1016/j.immuni.2011.03.021.

    Article  CAS  PubMed  Google Scholar 

  25. Geuking MB, McCoy KD, Macpherson AJ. The continuum of intestinal CD4+ T cell adaptations in host-microbial mutualism. Gut Microbes. 2011;2(6):353–7. https://doi.org/10.4161/gmic.18604.

    Article  PubMed  Google Scholar 

  26. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 2015;163(2):367–80. https://doi.org/10.1016/j.cell.2015.08.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campisi L, Barbet G, Ding Y, Esplugues E, Flavell RA, Blander JM. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol. 2016;17(9):1084–92. https://doi.org/10.1038/ni.3512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7. https://doi.org/10.1136/gut.28.10.1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ratajczak W, Ryl A, Mizerski A, Walczakiewicz K, Sipak O, Laszczynska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019;66(1):1–12. https://doi.org/10.18388/abp.2018_2648.

    Article  CAS  PubMed  Google Scholar 

  30. •• Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020;12(551). https://doi.org/10.1126/scitranslmed.aax2220. This study reported the interplay of typtophan metabolism, gut microbiota, and lupus immunopathogenesis, and suggested the potential of diet intervention in lupus control.

  31. •• Ma Y, Xu X, Li M, Cai J, Wei Q, Niu H. Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus. Mol Med. 2019;25(1):35. https://doi.org/10.1186/s10020-019-0102-5. This study indicated a fecal microbiome transplantation could transfer lupus phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson MB, Gaudreau C-M, Gudi R, Brown R, Gilkeson G, Vasu C. Gut microbiota differently contributes to intestinal immune phenotype and systemic autoimmune progression in female and male lupus-prone mice. J Autoimmun. 108:102420. https://doi.org/10.1016/j.jaut.2020.102420.

  33. Johnson BM, Gaudreau MC, Al-Gadban MM, Gudi R, Vasu C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin Exp Immunol. 2015;181(2):323–37. https://doi.org/10.1111/cei.12609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80(24):7551–60. https://doi.org/10.1128/aem.02676-14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mu Q, Tavella VJ, Kirby JL, Cecere TE, Chung M, Lee J, et al. Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep. 2017;7(1):13675. https://doi.org/10.1038/s41598-017-14223-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73. https://doi.org/10.1186/s40168-017-0300-8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Luo XM, Edwards MR, Mu Q, Yu Y, Vieson MD, Reilly CM, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol. 2018;84(4). https://doi.org/10.1128/AEM.02288-17.

  38. •• Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, Lubrano Di Ricco M, Manfredo Vieira S, Ruff WE, et al. A diet-sensitive commensal Lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe. 2019;25(1):113–27 e6. https://doi.org/10.1016/j.chom.2018.11.009. This study identified the pathogenic role of Lactobacillus reuteri in lupus via translocation and type 1 interferon activation.

    Article  CAS  PubMed  Google Scholar 

  39. Manirarora JN, Kosiewicz MM, Alard P. Feeding lactobacilli impacts lupus progression in (NZBxNZW)F1 lupus-prone mice by enhancing immunoregulation. Autoimmunity. 2020;53(6):323–32. https://doi.org/10.1080/08916934.2020.1777282.

    Article  CAS  PubMed  Google Scholar 

  40. Toral M, Robles-Vera I, Romero M, de la Visitación N, Sánchez M, O’Valle F, et al. Lactobacillus fermentum CECT5716: a novel alternative for the prevention of vascular disorders in a mouse model of systemic lupus erythematosus. FASEB J. 2019;33(9):10005–18. https://doi.org/10.1096/fj.201900545RR.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Wang HF, Li X, Li HX, Zhang Q, Zhou HW, et al. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin Sci. 2019;133(7):821–38. https://doi.org/10.1042/cs20180841.

    Article  CAS  Google Scholar 

  42. Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78(7):947–56. https://doi.org/10.1136/annrheumdis-2018-214856.

    Article  CAS  PubMed  Google Scholar 

  43. Guo M, Wang H, Xu S, Zhuang Y, An J, Su C, et al. Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus. Gut Microbes. 2020;11(6):1758–73. https://doi.org/10.1080/19490976.2020.1768644.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hevia A, Milani C, Lopez P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5(5):e01548–14. https://doi.org/10.1128/mBio.01548-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. He Z, Shao T, Li H, Xie Z, Wen C. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016;8:64. https://doi.org/10.1186/s13099-016-0146-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. •• Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 2018;359(6380):1156–61. https://doi.org/10.1126/science.aar7201. This study is a milestone in deciphering the autoimmunogenic and proinflammatory role of a gut pathobiont in SLE.

    Article  CAS  PubMed  Google Scholar 

  47. Neuman H, Koren O. The gut microbiota: a possible factor influencing systemic lupus erythematosus. Curr Opin Rheumatol. 2017;29(4):374–7. https://doi.org/10.1097/bor.0000000000000395.

    Article  CAS  PubMed  Google Scholar 

  48. Mu Q, Zhang H, Luo XM. SLE: another autoimmune disorder influenced by microbes and diet? Front Immunol. 2015;6:608. https://doi.org/10.3389/fimmu.2015.00608.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thim-Uam A, Surawut S, Issara-Amphorn J, Jaroonwitchawan T, Hiengrach P, Chatthanathon P, et al. Leaky-gut enhanced lupus progression in the Fc gamma receptor-IIb deficient and pristane-induced mouse models of lupus. Sci Rep. 2020;10(1):777. https://doi.org/10.1038/s41598-019-57275-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogunrinde E, Zhou Z, Luo Z, Alekseyenko A, Li QZ, Macedo D, et al. A link between plasma microbial translocation, microbiome, and autoantibody development in first-degree relatives of systemic lupus erythematosus patients. Arthritis Rheumatol. 2019;71(11):1858–68. https://doi.org/10.1002/art.40935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Deshmukh US, Lewis JE, Gaskin F, Dhakephalkar PK, Kannapell CC, Waters ST, et al. Ro60 peptides induce antibodies to similar epitopes shared among lupus-related autoantigens. J Immunol. 2000;164(12):6655–61. https://doi.org/10.4049/jimmunol.164.12.6655.

    Article  CAS  PubMed  Google Scholar 

  52. Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10(434). https://doi.org/10.1126/scitranslmed.aan2306.

  53. Clancy RM, Marion MC, Ainsworth HC, Blaser MJ, Chang M, Howard TD, et al. Salivary dysbiosis and the clinical spectrum in anti-Ro positive mothers of children with neonatal lupus. J Autoimmun. 2020;107:102354. https://doi.org/10.1016/j.jaut.2019.102354.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Z, Ren J, Dai C, Kannapell CC, Wang H, Gaskin F, et al. Nature of T cell epitopes in lupus antigens and HLA-DR determines autoantibody initiation and diversification. Ann Rheum Dis. 2019;78(3):380–90. https://doi.org/10.1136/annrheumdis-2018-214125.

    Article  CAS  PubMed  Google Scholar 

  55. Pericleous C, D’Souza A, McDonnell T, Ripoll VM, Leach O, Isenberg D, et al. Antiphospholipid antibody levels in early systemic lupus erythematosus: are they associated with subsequent mortality and vascular events? Rheumatology. 2020;59(1):146–52. https://doi.org/10.1093/rheumatology/kez239.

    Article  CAS  PubMed  Google Scholar 

  56. Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT, et al. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host Microbe. 2019;26(1):100–13 e8. https://doi.org/10.1016/j.chom.2019.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072. https://doi.org/10.1038/srep24072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. https://doi.org/10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73. https://doi.org/10.1126/science.1241165.

    Article  CAS  PubMed  Google Scholar 

  60. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep. 2015;5:16148. https://doi.org/10.1038/srep16148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020;11(1):60. https://doi.org/10.1038/s41467-019-13603-6. This study revealed the impact of SCFA on B cell intrinsic function and the involved pathways and molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crow MK. Type I interferon in the pathogenesis of lupus. J Immunol. 2014;192(12):5459–68. https://doi.org/10.4049/jimmunol.1002795.

    Article  CAS  PubMed  Google Scholar 

  63. Mu Q, Cabana-Puig X, Mao J, Swartwout B, Abdelhamid L, Cecere TE, et al. Pregnancy and lactation interfere with the response of autoimmunity to modulation of gut microbiota. Microbiome. 2019;7(1):105. https://doi.org/10.1186/s40168-019-0720-8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lippens C, Duraes FV, Dubrot J, Brighouse D, Lacroix M, Irla M, et al. IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun. 2016;75:39–49. https://doi.org/10.1016/j.jaut.2016.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98. https://doi.org/10.1016/j.cell.2009.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89. https://doi.org/10.1016/j.immuni.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  67. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27. https://doi.org/10.1016/j.immuni.2010.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 2015;34(4):466–74. https://doi.org/10.15252/embj.201489966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81788101, 81630044, 81771763, 82071840), Chinese Academy of Medical Science Innovation Fund for Medical Sciences (CIFMS2017-12M-1-008, 2016-12M-1-003, 2017-I2M-3-011, 2016-12M-1-008, 2020-12M-C&T-B-013), Beijing Capital Health Development Fund (2020-2-4019), and Grant from Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (2017PT31035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lidan Zhao or Xuan Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Systemic Lupus Erythematosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Meng, X., Chen, B. et al. Gut Microbiota in Lupus: a Butterfly Effect?. Curr Rheumatol Rep 23, 27 (2021). https://doi.org/10.1007/s11926-021-00986-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-00986-z

Keywords

Navigation