Skip to main content
Log in

How to Interpret Antiphospholipid Laboratory Tests

  • Antiphospholipid Syndrome (S Zuily, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review focuses on the laboratory tests necessary for the diagnosis of antiphospholipid syndrome (APS). For the interpretation of the results of the tests for antiphospholipid antibodies (aPL), understanding of all pitfalls and interferences is necessary.

Recent Findings

Progress has been made on the standardization of aPL tests and current guidelines for detection of lupus anticoagulant (LAC), anticardiolipin antibodies (aCL), and antibeta2-glycoprotein I antibodies (aβ2GPI) are useful tools. LAC measurement remains a complex procedure with many pitfalls and interference by anticoagulant therapy. Solid phase assays for aCL and aβ2GPI still show inter-assay differences. Measuring LAC, aCL, and aβ2GPI allows making antibody profiles that help in identifying patients at risk. Other aPL, such as antibodies against domain I of beta2-glycoprotein I (aDI) and antiphosphatidylserine-prothrombin (aPS/PT) antibodies, may be useful in risk stratification of APS patients, but are not included in the current diagnostic criteria as no added value in the diagnosis of APS has been illustrated so far.

Summary

The laboratory diagnosis of APS remains challenging. LAC, aCL, aβ2GPI IgG, and IgM should be performed to increase diagnostic efficacy, with an integrated interpretation of all results and an interpretative comment. A close interaction between clinical pathologists and clinicians is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4(2):295–306. https://doi.org/10.1111/j.1538-7836.2006.01753.x.

    Article  CAS  PubMed  Google Scholar 

  2. •• Devreese KMJ, Ortel TL, Pengo V, de Laat B, Subcommittee on Lupus Anticoagulant/Antiphospholipid A. Laboratory criteria for antiphospholipid syndrome: communication from the SSC of the ISTH. J Thromb Haemost. 2018;16(4):809–13. https://doi.org/10.1111/jth.13976This is a concise report on the current laboratory criteria for APS.

    Article  CAS  PubMed  Google Scholar 

  3. Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78(10):1296–304. https://doi.org/10.1136/annrheumdis-2019-215213.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010–21. https://doi.org/10.1056/NEJMra1705454.

    Article  CAS  PubMed  Google Scholar 

  5. Devreese K, Peerlinck K, Hoylaerts MF. Thrombotic risk assessment in the antiphospholipid syndrome requires more than the quantification of lupus anticoagulants. Blood. 2010;115(4):870–8. https://doi.org/10.1182/blood-2009-09-244426.

    Article  CAS  PubMed  Google Scholar 

  6. Devreese K, Peerlinck K, Hoylaerts MF. Diagnostic test combinations associated with thrombosis in lupus anticoagulant positive patients. Thromb Haemost. 2011;105(4):736–8. https://doi.org/10.1160/TH10-09-0606.

    Article  CAS  PubMed  Google Scholar 

  7. Devreese KM. Antiphospholipid antibodies: evaluation of the thrombotic risk. Thromb Res. 2012;130(Suppl 1):S37–40. https://doi.org/10.1016/j.thromres.2012.08.270.

    Article  PubMed  Google Scholar 

  8. Pengo V, Ruffatti A, Legnani C, Gresele P, Barcellona D, Erba N, et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome. J Thromb Haemost. 2010;8(2):237–42. https://doi.org/10.1111/j.1538-7836.2009.03674.x.

    Article  CAS  PubMed  Google Scholar 

  9. Pengo V, Bison E, Denas G, Jose SP, Zoppellaro G, Banzato A. Laboratory diagnostics of antiphospholipid syndrome. Semin Thromb Hemost. 2018;44(5):439–44. https://doi.org/10.1055/s-0037-1601331.

    Article  CAS  PubMed  Google Scholar 

  10. Pengo V, Ruffatti A, Legnani C, Testa S, Fierro T, Marongiu F, et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study. Blood. 2011;118(17):4714–8. https://doi.org/10.1182/blood-2011-03-340232.

    Article  CAS  PubMed  Google Scholar 

  11. Pengo V, Biasiolo A, Pegoraro C, Cucchini U, Noventa F, Iliceto S. Antibody profiles for the diagnosis of antiphospholipid syndrome. Thromb Haemost. 2005;93(6):1147–52. https://doi.org/10.1267/THRO05061147.

    Article  CAS  PubMed  Google Scholar 

  12. Devreese KMJ, Ortel TL, Pengo V, de Laat B. Laboratory criteria for antiphospholipid syndrome: reply. J Thromb Haemost. 2018;16(10):2117–9. https://doi.org/10.1111/jth.14238.

    Article  CAS  PubMed  Google Scholar 

  13. Devreese KM. Antiphospholipid antibody testing and standardization. Int J Lab Hematol. 2014;36(3):352–63. https://doi.org/10.1111/ijlh.12234.

    Article  CAS  PubMed  Google Scholar 

  14. Devreese K, Hoylaerts MF. Laboratory diagnosis of the antiphospholipid syndrome: a plethora of obstacles to overcome. Eur J Haematol. 2009;83(1):1–16. https://doi.org/10.1111/j.1600-0609.2009.01243.x.

    Article  CAS  PubMed  Google Scholar 

  15. Devreese K, Hoylaerts MF. Challenges in the diagnosis of the antiphospholipid syndrome. Clin Chem. 2010;56(6):930–40. https://doi.org/10.1373/clinchem.2009.133678.

    Article  CAS  PubMed  Google Scholar 

  16. Devreese KM. Standardization of antiphospholipid antibody assays. Where do we stand? Lupus. 2012;21(7):718–21. https://doi.org/10.1177/0961203312439335.

    Article  CAS  PubMed  Google Scholar 

  17. Pengo V, Tripodi A, Reber G, Rand JH, Ortel TL, Galli M, et al. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2009;7(10):1737–40. https://doi.org/10.1111/j.1538-7836.2009.03555.x.

    Article  CAS  PubMed  Google Scholar 

  18. Favaloro EJ, Bonar R, Marsden K. Internal quality control and external quality assurance in testing for antiphospholipid antibodies: part II--lupus anticoagulant. Semin Thromb Hemost. 2012;38(4):404–11. https://doi.org/10.1055/s-0032-1311993.

    Article  CAS  PubMed  Google Scholar 

  19. Dembitzer FR, Ledford Kraemer MR, Meijer P, Peerschke EI. Lupus anticoagulant testing: performance and practices by North American clinical laboratories. Am J Clin Pathol. 2010;134(5):764–73. https://doi.org/10.1309/AJCP4SPPLG5XVIXF.

    Article  CAS  PubMed  Google Scholar 

  20. Chayoua W, Kelchtermans H, Moore GW, Gris JC, Musial J, Wahl D, et al. Detection of anti-cardiolipin and anti-beta2glycoprotein I antibodies differs between platforms without influence on association with clinical symptoms. Thromb Haemost. 2019;119(5):797–806. https://doi.org/10.1055/s-0039-1679901.

    Article  PubMed  Google Scholar 

  21. Pengo V, Biasiolo A, Bison E, Chantarangkul V, Tripodi A, Italian Federation of Anticoagulation C. Antiphospholipid antibody ELISAs: survey on the performance of clinical laboratories assessed by using lyophilized affinity-purified IgG with anticardiolipin and anti-beta2-glycoprotein I activity. Thromb Res. 2007;120(1):127–33. https://doi.org/10.1016/j.thromres.2006.07.014.

    Article  CAS  PubMed  Google Scholar 

  22. Favaloro EJ, Wheatland L, Jovanovich S, Roberts-Thomson P, Wong RC. Internal quality control and external quality assurance in testing for antiphospholipid antibodies: part I--anticardiolipin and anti-beta2-glycoprotein I antibodies. Semin Thromb Hemost. 2012;38(4):390–403. https://doi.org/10.1055/s-0032-1311990.

    Article  CAS  PubMed  Google Scholar 

  23. Devreese KM, Pierangeli SS, de Laat B, Tripodi A, Atsumi T, Ortel TL, et al. Testing for antiphospholipid antibodies with solid phase assays: guidance from the SSC of the ISTH. J Thromb Haemost. 2014;12(5):792–5. https://doi.org/10.1111/jth.12537.

    Article  CAS  PubMed  Google Scholar 

  24. Clinical and Laboratory Standards Institute W P, USA. Laboratory testing for the lupus anticoagulant. H60-A. 2014

  25. Keeling D, Mackie I, Moore GW, Greer IA, Greaves M, British Committee for Standards in H. Guidelines on the investigation and management of antiphospholipid syndrome. Br J Haematol. 2012;157(1):47–58. https://doi.org/10.1111/j.1365-2141.2012.09037.x.

    Article  CAS  PubMed  Google Scholar 

  26. •• Tripodi A, Cohen H, Devreese KMJ. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis journal of thrombosis and haemostasis. 2020;accepted for publication. Doi https://doi.org/10.1111/jth.14846. This guidance describes literature and expert practice to guide lupus anticoagulant detection in aticoagulated patients, since lupus anticoagulant detection is not well established in this patient group. Although there are no easy solutions, some options are recommended.

  27. Galli M, Luciani D, Bertolini G, Barbui T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood. 2003;101(5):1827–32. https://doi.org/10.1182/blood-2002-02-0441.

    Article  CAS  PubMed  Google Scholar 

  28. Gardiner C, Hills J, Machin SJ, Cohen H. Diagnosis of antiphospholipid syndrome in routine clinical practice. Lupus. 2013;22(1):18–25. https://doi.org/10.1177/0961203312460722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gebhart J, Posch F, Koder S, Perkmann T, Quehenberger P, Zoghlami C, et al. Increased mortality in patients with the lupus anticoagulant: the Vienna Lupus Anticoagulant and Thrombosis Study (LATS). Blood. 2015;125(22):3477–83. https://doi.org/10.1182/blood-2014-11-611129.

    Article  CAS  PubMed  Google Scholar 

  30. Lockshin MD, Kim M, Laskin CA, Guerra M, Branch DW, Merrill J, et al. Prediction of adverse pregnancy outcome by the presence of lupus anticoagulant, but not anticardiolipin antibody, in patients with antiphospholipid antibodies. Arthritis Rheum. 2012;64(7):2311–8. https://doi.org/10.1002/art.34402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sciascia S, Murru V, Sanna G, Roccatello D, Khamashta MA, Bertolaccini ML. Clinical accuracy for diagnosis of antiphospholipid syndrome in systemic lupus erythematosus: evaluation of 23 possible combinations of antiphospholipid antibody specificities. J Thromb Haemost. 2012;10(12):2512–8. https://doi.org/10.1111/jth.12014.

    Article  CAS  PubMed  Google Scholar 

  32. Mustonen P, Lehtonen KV, Javela K, Puurunen M. Persistent antiphospholipid antibody (aPL) in asymptomatic carriers as a risk factor for future thrombotic events: a nationwide prospective study. Lupus. 2014;23(14):1468–76. https://doi.org/10.1177/0961203314545410.

    Article  CAS  PubMed  Google Scholar 

  33. Cohen H, Mackie IJ, Devreese KMJ. Clinical and laboratory practice for lupus anticoagulant testing: an International Society of Thrombosis and Haemostasis Scientific and Standardization Committee survey. J Thromb Haemost. 2019;17(10):1715–32. https://doi.org/10.1111/jth.14560.

    Article  PubMed  Google Scholar 

  34. Triplett DA, Barna LK, Unger GA. A hexagonal (II) phase phospholipid neutralization assay for lupus anticoagulant identification. Thromb Haemost. 1993;70(5):787–93.

    Article  CAS  Google Scholar 

  35. Florin L, Desloovere M, Devreese KMJ. Evaluation of an automated algorithm for interpretation of lupus anticoagulant testing. Int J Lab Hematol. 2019;41(3):412–7. https://doi.org/10.1111/ijlh.13001.

    Article  PubMed  Google Scholar 

  36. Devreese KM, Poncet A, Lindhoff-Last E, Musial J, de Moerloose P, Fontana P. A multicenter study to assess the reproducibility of antiphospholipid antibody results produced by an automated system. J Thromb Haemost. 2017;15(1):91–5. https://doi.org/10.1111/jth.13560.

    Article  CAS  PubMed  Google Scholar 

  37. Reynaud Q, Lega JC, Mismetti P, Chapelle C, Wahl D, Cathebras P, et al. Risk of venous and arterial thrombosis according to type of antiphospholipid antibodies in adults without systemic lupus erythematosus: a systematic review and meta-analysis. Autoimmun Rev. 2014;13(6):595–608. https://doi.org/10.1016/j.autrev.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  38. Van Hoecke F, Persijn L, Decavele AS, Devreese K. Performance of two new, automated chemiluminescence assay panels for anticardiolipin and anti-beta2-glycoprotein I antibodies in the laboratory diagnosis of the antiphospholipid syndrome. Int J Lab Hematol. 2012;34:630–40. https://doi.org/10.1111/j.1751-553X.2012.01448.x.

    Article  PubMed  Google Scholar 

  39. Pelkmans L, Kelchtermans H, de Groot PG, Zuily S, Regnault V, Wahl D, et al. Variability in exposure of epitope G40-R43 of domain I in commercial anti-beta2-glycoprotein I IgG ELISAs. PLoS One. 2013;8(8):e71402. https://doi.org/10.1371/journal.pone.0071402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galli M, Borrelli G, Jacobsen EM, Marfisi RM, Finazzi G, Marchioli R, et al. Clinical significance of different antiphospholipid antibodies in the WAPS (warfarin in the antiphospholipid syndrome) study. Blood. 2007;110(4):1178–83. https://doi.org/10.1182/blood-2007-01-066043.

    Article  CAS  PubMed  Google Scholar 

  41. Boffa MC, Boinot C, De Carolis S, Rovere-Querini P, Aurousseau MH, Allegri F, et al. Laboratory criteria of the obstetrical antiphospholipid syndrome. Data from a multicentric prospective European women cohort. Thromb Haemost. 2009;102(1):25–8. https://doi.org/10.1160/TH09-01-0043.

    Article  CAS  PubMed  Google Scholar 

  42. Kelchtermans H, Pelkmans L, de Laat B, Devreese KM. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J Thromb Haemost. 2016;14(8):1530–48. https://doi.org/10.1111/jth.13379.

    Article  CAS  PubMed  Google Scholar 

  43. • Chayoua W, Kelchtermans H, Gris JC, Moore GW, Musial J, Wahl D, et al. The (non-)sense of detecting anti-cardiolipin and anti-beta2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J Thromb Haemost. 2020;18(1):169–79. https://doi.org/10.1111/jth.14633In this study, new insights are given on the role of IgM aCL and aβ2GPI in APS diagnosis. So far, no studies evaluated the role of isolated positivity of IgM that apparently plays a different role depending on the type of APS-related clinical symptoms.

    Article  CAS  PubMed  Google Scholar 

  44. Pengo V, Banzato A, Bison E, Bracco A, Denas G, Ruffatti A. What have we learned about antiphospholipid syndrome from patients and antiphospholipid carrier cohorts? Semin Thromb Hemost. 2012;38(4):322–7. https://doi.org/10.1055/s-0032-1304719.

    Article  CAS  PubMed  Google Scholar 

  45. Chayoua W, Kelchtermans H, Moore GW, Musial J, Wahl D, de Laat B, et al. Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-beta2glycoprotein I antibody detection assays. J Thromb Haemost. 2018;16(10):2016–23. https://doi.org/10.1111/jth.14261.

    Article  CAS  PubMed  Google Scholar 

  46. Perez D, Tincani A, Serrano M, Shoenfeld Y, Serrano A. Antiphospholipid syndrome and IgA anti-beta2-glycoprotein I antibodies: when Cinderella becomes a princess. Lupus. 2018;27(2):177–8. https://doi.org/10.1177/0961203317738227.

    Article  CAS  PubMed  Google Scholar 

  47. Meijide H, Sciascia S, Sanna G, Khamashta MA, Bertolaccini ML. The clinical relevance of IgA anticardiolipin and IgA anti-beta2 glycoprotein I antiphospholipid antibodies: a systematic review. Autoimmun Rev. 2013;12(3):421–5. https://doi.org/10.1016/j.autrev.2012.08.002.

    Article  CAS  PubMed  Google Scholar 

  48. Chayoua W, Yin D, Kelchtermans H, Moore GW, Gris JC, Musial J, et al. Anti- cardiolipin and anti- β2glycoprotein I IgA along with the current criteria does not have an added value in screening for clinical symptoms of the antiphospholipid syndrome. Res Pract Thromb Haemost. 2019;3(S1):687.

    Google Scholar 

  49. Schouwers SM, Delanghe JR, Devreese KM. Lupus anticoagulant (LAC) testing in patients with inflammatory status: does C-reactive protein interfere with LAC test results? Thromb Res. 2010;125(1):102–4. https://doi.org/10.1016/j.thromres.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  50. Petri M. Improvements in diagnosis and risk assessment of primary and secondary antiphospholipid syndrome. Hematol Am Soc Hematol Educ Program. 2019;2019(1):415–20. https://doi.org/10.1182/hematology.2019000046.

    Article  Google Scholar 

  51. Yelnik CM, Porter TF, Branch DW, Laskin CA, Merrill JT, Guerra MM, et al. Brief report: changes in antiphospholipid antibody titers during pregnancy: effects on pregnancy outcomes. Arthritis Rheumatol. 2016;68(8):1964–9. https://doi.org/10.1002/art.39668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Al-Balushi MS, Hasson SS, Said EA, Al-Busaidi JZ, Al-Daihani MS, Othman MS, et al. Fluctuation in the levels of immunoglobulin M and immunoglobulin G antibodies for cardiolipin and beta2-glycoprotein among healthy pregnant women. Sultan Qaboos Univ Med J. 2014;14(4):e478–85.

    PubMed  PubMed Central  Google Scholar 

  53. Topping J, Quenby S, Farquharson R, Malia R, Greaves M. Marked variation in antiphospholipid antibodies during pregnancy: relationships to pregnancy outcome. Hum Reprod. 1999;14(1):224–8. https://doi.org/10.1093/humrep/14.1.224.

    Article  CAS  PubMed  Google Scholar 

  54. Fazili M, Stevens SM, Woller SC. Direct oral anticoagulants in antiphospholipid syndrome with venous thromboembolism: impact of the European Medicines Agency guidance. Res Pract Thromb Haemost. 2020;4(1):9–12. https://doi.org/10.1002/rth2.12287.

    Article  PubMed  Google Scholar 

  55. Depreter B, Devreese KM. Dilute Russell’s viper venom time reagents in lupus anticoagulant testing: a well-considered choice. Clin Chem Lab Med. 2017;55(1):91–101. https://doi.org/10.1515/cclm-2016-0245.

    Article  CAS  PubMed  Google Scholar 

  56. De Kesel PM, Devreese KMJ. The effect of unfractionated heparin, enoxaparin and danaparoid on lupus anticoagulant testing. Can activated carbon eliminate false positive results? Res Pract Thromb Haemost. 2019. https://doi.org/10.1002/rth1002.12264.

  57. Hoxha A, Banzato A, Ruffatti A, Pengo V. Detection of lupus anticoagulant in the era of direct oral anticoagulants. Autoimmun Rev. 2017;16(2):173–8. https://doi.org/10.1016/j.autrev.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  58. Ratzinger F, Lang M, Belik S, Jilma-Stohlawetz P, Schmetterer KG, Haslacher H, et al. Lupus-anticoagulant testing at NOAC trough levels. Thromb Haemost. 2016;116(2):235–40. https://doi.org/10.1160/TH16-02-0081.

    Article  PubMed  Google Scholar 

  59. Jacquemin M, Toelen J, Schoeters J, van Horenbeeck I, Vanlinthout I, Debasse M, et al. The addition of idarucizumab to plasma samples containing dabigatran allows the use of routine coagulation assays for the diagnosis of hemostasis disorders. J Thromb Haemost. 2015;13(11):2087–92. https://doi.org/10.1111/jth.13138.

    Article  CAS  PubMed  Google Scholar 

  60. Exner T, Michalopoulos N, Pearce J, Xavier R, Ahuja M. Simple method for removing DOACs from plasma samples. Thromb Res. 2018;163:117–22. https://doi.org/10.1016/j.thromres.2018.01.047.

    Article  CAS  PubMed  Google Scholar 

  61. Favresse J, Lardinois B, Sabor L, Devalet B, Vandepapeliere J, Braibant M, et al. Evaluation of the DOAC-Stop(R) procedure to overcome the effect of DOACs on several thrombophilia screening tests. TH Open. 2018;2(2):e202–9. https://doi.org/10.1055/s-0038-1657785.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Favaloro EJ, Gilmore G, Arunachalam S, Mohammed S, Baker R. Neutralising rivaroxaban induced interference in laboratory testing for lupus anticoagulant (LA): a comparative study using DOAC Stop and andexanet alfa. Thromb Res. 2019;180:10–9. https://doi.org/10.1016/j.thromres.2019.05.013.

    Article  CAS  PubMed  Google Scholar 

  63. Frans G, Meeus P, Bailleul E. Resolving DOAC interference on aPTT, PT, and lupus anticoagulant testing by the use of activated carbon. J Thromb Haemost. 2019;17(8):1354–62. https://doi.org/10.1111/jth.14488.

    Article  CAS  PubMed  Google Scholar 

  64. Platton S, Hunt C. Influence of DOAC Stop on coagulation assays in samples from patients on rivaroxaban or apixaban. Int J Lab Hematol. 2019;41(2):227–33. https://doi.org/10.1111/ijlh.12950.

    Article  PubMed  Google Scholar 

  65. Vanoverschelde L, Kelchtermans H, Musial J, de Laat B, Devreese KMJ. Influence of anticardiolipin and anti-beta2 glycoprotein I antibody cutoff values on antiphospholipid syndrome classification. Res Pract Thromb Haemost. 2019;3(3):515–27. https://doi.org/10.1002/rth2.12207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clinical and Laboratory Standards Institute W P, USA. . Defining, establishing, and verifying reference intervals in the clinical laboratory C28-A3. 2008

  67. Moore GW, Kumano O. Lupus anticoagulant assay cut-offs vary between reagents even when derived from a common set of normal donor plasmas. J Thromb Haemost. 2020;18(2):439–44. https://doi.org/10.1111/jth.14669.

    Article  CAS  PubMed  Google Scholar 

  68. Pradella P, Azzarini G, Santarossa L, Caberlotto L, Bardin C, Poz A, et al. Cooperation experience in a multicentre study to define the upper limits in a normal population for the diagnostic assessment of the functional lupus anticoagulant assays. Clin Chem Lab Med. 2013;51(2):379–85. https://doi.org/10.1515/cclm-2012-0382.

    Article  CAS  PubMed  Google Scholar 

  69. Tripodi A, Chantarangkul V, Cini M, Devreese K, Dlott JS, Giacomello R, et al. Variability of cut-off values for the detection of lupus anticoagulants: results of an international multicenter multiplatform study. J Thromb Haemost. 2017;15(6):1180–90. https://doi.org/10.1111/jth.13678.

    Article  CAS  PubMed  Google Scholar 

  70. Montaruli B, De Luna E, Erroi L, Marchese C, Mengozzi G, Napoli P, et al. Analytical and clinical comparison of different immunoassay systems for the detection of antiphospholipid antibodies. Int J Lab Hematol. 2016;38(2):172–82. https://doi.org/10.1111/ijlh.12466.

    Article  CAS  PubMed  Google Scholar 

  71. Lakos G, Bentow C, Mahler M. A clinical approach for defining the threshold between low and medium anti-cardiolipin antibody levels for QUANTA flash assays. Antibodies (Basel). 2016;5(2). Doi https://doi.org/10.3390/antib5020014.

  72. Pengo V, Del Ross T, Ruffatti A, Bison E, Cattini MG, Pontara E, et al. Lupus anticoagulant identifies two distinct groups of patients with different antibody patterns. Thromb Res. 2018;172:172–8. https://doi.org/10.1016/j.thromres.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  73. Mattia E, Tonello M, Del Ross T, Zerbinati P, Campello E, Simioni P, et al. Clinical and laboratory characteristics of isolated lupus anticoagulants. Thromb Res. 2018;165:51–3. https://doi.org/10.1016/j.thromres.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  74. Urbanus RT, Siegerink B, Roest M, Rosendaal FR, de Groot PG, Algra A. Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: a case-control study. Lancet Neurol. 2009;8(11):998–1005. https://doi.org/10.1016/S1474-4422(09)70239-X.

    Article  CAS  PubMed  Google Scholar 

  75. Pengo V, Ruffatti A, Del Ross T, Tonello M, Cuffaro S, Hoxha A, et al. Confirmation of initial antiphospholipid antibody positivity depends on the antiphospholipid antibody profile. J Thromb Haemost. 2013;11(8):1527–31. https://doi.org/10.1111/jth.12264.

    Article  CAS  PubMed  Google Scholar 

  76. Devignes J, Smail-Tabbone M, Herve A, Cagninacci G, Devignes MD, Lecompte T, et al. Extended persistence of antiphospholipid antibodies beyond the 12-week time interval: association with baseline antiphospholipid antibodies titres. Int J Lab Hematol. 2019;41(6):726–30. https://doi.org/10.1111/ijlh.13094.

    Article  PubMed  Google Scholar 

  77. Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review. Thromb Haemost. 2014;111(2):354–64. https://doi.org/10.1160/TH13-06-0509.

    Article  CAS  PubMed  Google Scholar 

  78. • Radin M, Foddai SG, Cecchi I, Rubini E, Schreiber K, Roccatello D, et al. Antiphosphatidylserine/prothrombin antibodies: an update on their association with clinical manifestations of antiphospholipid syndrome. Thromb Haemost. 2020;120(4):592–8. https://doi.org/10.1055/s-0040-1705115A recent review on a group of aPL, the antiphosphatidylserine/prothrombin antibodies, not included in the current classification criteria of APS, but associated with thrombosis and pregnancy morbidity, although where the added value on top of the current diagnostic criteria is not clear.

    Article  PubMed  Google Scholar 

  79. Litvinova E, Darnige L, Kirilovsky A, Burnel Y, de Luna G, Dragon-Durey MA. Prevalence and significance of non-conventional antiphospholipid antibodies in patients with clinical APS criteria. Front Immunol. 2018;9:2971. https://doi.org/10.3389/fimmu.2018.02971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sciascia S, Sanna G, Murru V, Roccatello D, Khamashta MA, Bertolaccini ML. GAPSS: the global anti-phospholipid syndrome score. Rheumatology (Oxford). 2013;52(8):1397–403. https://doi.org/10.1093/rheumatology/kes388.

    Article  Google Scholar 

  81. Tonello M, Mattia E, Favaro M, Del Ross T, Calligaro A, Salvan E, et al. IgG phosphatidylserine/prothrombin antibodies as a risk factor of thrombosis in antiphospholipid antibody carriers. Thromb Res. 2019;177:157–60. https://doi.org/10.1016/j.thromres.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  82. Arachchillage DRJ, Laffan M. Pathogenesis and management of antiphospholipid syndrome. Br J Haematol. 2017;178(2):181–95. https://doi.org/10.1111/bjh.14632.

    Article  CAS  PubMed  Google Scholar 

  83. de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood. 2005;105(4):1540–5. https://doi.org/10.1182/blood-2004-09-3387.

    Article  CAS  PubMed  Google Scholar 

  84. de Laat B, Pengo V, Pabinger I, Musial J, Voskuyl AE, Bultink IE, et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost. 2009;7(11):1767–73. https://doi.org/10.1111/j.1538-7836.2009.03588.x.

    Article  PubMed  Google Scholar 

  85. • Yin D, de Laat B, Devreese KMJ, Kelchtermans H. The clinical value of assays detecting antibodies against domain I of beta2-glycoprotein I in the antiphospholipid syndrome. Autoimmun Rev. 2018;17(12):1210–8. https://doi.org/10.1016/j.autrev.2018.06.011A recent review highlighting all aspects of a subpopulation of antiphospholipid antibodies, antibodies against domain I of beta2-glycoprotein I, not included in the current classification criteria for APS.

    Article  CAS  PubMed  Google Scholar 

  86. De Craemer AS, Musial J, Devreese KM. Role of anti-domain 1-beta2 glycoprotein I antibodies in the diagnosis and risk stratification of antiphospholipid syndrome. J Thromb Haemost. 2016;14(9):1779–87. https://doi.org/10.1111/jth.13389.

    Article  CAS  PubMed  Google Scholar 

  87. Iwaniec T, Kaczor MP, Celinska-Lowenhoff M, Polanski S, Musial J. Identification of patients with triple antiphospholipid antibody positivity is platform and method independent. Pol Arch Med Wewn. 2016;126(1-2):19–24.

    PubMed  Google Scholar 

  88. Yin D, Chayoua W, Kelchtermans H, de Groot PG, Moore GW, Gris JC, et al. Detection of anti-domain I antibodies by chemiluminescence enables the identification of high-risk antiphospholipid syndrome patients: a multicenter multiplatform study. J Thromb Haemost. 2020;18(2):463–78. https://doi.org/10.1111/jth.14682.

    Article  CAS  PubMed  Google Scholar 

  89. Pengo V, Ruffatti A, Tonello M, Cuffaro S, Banzato A, Bison E, et al. Antiphospholipid syndrome: antibodies to domain 1 of beta2-glycoprotein 1 correctly classify patients at risk. J Thromb Haemost. 2015;13(5):782–7. https://doi.org/10.1111/jth.12865.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrien M. J. Devreese.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by the author. For the studies with human subjects referred to with the author as co-author, compliance with ethical guidelines were addressed in the referred articles.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antiphospholipid Syndrome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devreese, K.M.J. How to Interpret Antiphospholipid Laboratory Tests. Curr Rheumatol Rep 22, 38 (2020). https://doi.org/10.1007/s11926-020-00916-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00916-5

Keywords

Navigation