Skip to main content
Log in

Innate Immune Dysregulation in the Development of Cardiovascular Disease in Lupus

  • Systemic Lupus Erythematosus (G Tsokos, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The systemic inflammatory nature of systemic lupus erythematosus (SLE) is patent not only in the diverse clinical manifestations of the disease but also in the increased risk of premature cardiovascular diseases (CVD). In this review, we discuss the latest findings on the key factors of the innate immune system known to play critical roles in the pathogenesis of accelerated CVD in patients with SLE and discuss the potential that immunometabolism may play a key role in this respect.

Recent Findings

Recent studies exploring the association between SLE and premature CVD clearly showed that alterations of specific immune functions play a pivotal role in the increased cardiovascular morbidity and mortality in the SLE patients. Novel molecular factors such as type I interferons (IFN), dysregulated neutrophil function, and changes to cellular metabolism and metabolites are emerging as important regulators of systemic immune dysfunction and as strong risk factors for premature CVD in SLE.

Summary

Although corticosteroids and cytotoxic agents can be used to effectively manage and control various lupus-related complications, to date, no drug has been proven to prevent the development of premature atherosclerosis in SLE. However, as new mechanisms underlying this complication of SLE are uncovered, such as the role of metabolism and neutrophil-driven inflammation, new avenues for therapeutic intervention are being discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.

    PubMed  Google Scholar 

  2. Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12(10):605–20.

    PubMed  Google Scholar 

  3. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.

    CAS  PubMed  Google Scholar 

  4. Lu R, Munroe ME, Guthridge JM, Bean KM, Fife DA, Chen H, et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J Autoimmun. 2016;74:182–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Giannelou M, Mavragani CP. Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J Autoimmun. 2017;82:1–12.

    PubMed  Google Scholar 

  6. Schoenfeld SR, Kasturi S, Costenbader KH. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum. 2013;43(1):77–95.

    PubMed  Google Scholar 

  7. McMahon M, Skaggs BJ, Grossman JM, Sahakian L, Fitzgerald J, Wong WK, et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol. 2014;66(1):130–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA Jr, Jansen-McWilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am J Epidemiol. 1997;145(5):408–15.

    CAS  PubMed  Google Scholar 

  9. Hansson GK. Inflammation, protection, and the problems of translation. Nat Rev Cardiol. 2018;15(12):729–30.

    PubMed  Google Scholar 

  10. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, et al. Inflammation, immunity, and infection in atherothrombosis: JACC review topic of the week. J Am Coll Cardiol. 2018;72(17):2071–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Escarcega RO, Lipinski MJ, Garcia-Carrasco M, Mendoza-Pinto C, Galvez-Romero JL, Cervera R. Inflammation and atherosclerosis: cardiovascular evaluation in patients with autoimmune diseases. Autoimmun Rev. 2018;17(7):703–8.

    CAS  PubMed  Google Scholar 

  12. Wu GC, Liu HR, Leng RX, Li XP, Li XM, Pan HF, et al. Subclinical atherosclerosis in patients with systemic lupus erythematosus: a systemic review and meta-analysis. Autoimmun Rev. 2016;15(1):22–37.

    PubMed  Google Scholar 

  13. Liu Y, Kaplan MJ. Cardiovascular disease in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2018;30(5):441–8.

    PubMed  Google Scholar 

  14. Teixeira V, Tam LS. Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med (Lausanne). 2017;4:262.

    PubMed  Google Scholar 

  15. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    CAS  PubMed  Google Scholar 

  16. McMahon M, Hahn BH, Skaggs BJ. Systemic lupus erythematosus and cardiovascular disease: prediction and potential for therapeutic intervention. Expert Rev Clin Immunol. 2011;7(2):227–41.

    PubMed  PubMed Central  Google Scholar 

  17. Li H, Tong Q, Guo L, Yu S, Li Y, Cao Q, et al. Risk of coronary artery disease in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Am J Med Sci. 2018;356(5):451–63.

    PubMed  Google Scholar 

  18. Haque S, Skeoch S, Rakieh C, Edlin H, Ahmad Y, Ho P, et al. Progression of subclinical and clinical cardiovascular disease in a UK SLE cohort: the role of classic and SLE-related factors. Lupus Sci Med. 2018;5(1):e000267.

    PubMed  PubMed Central  Google Scholar 

  19. Manzi S, Selzer F, Sutton-Tyrrell K, Fitzgerald SG, Rairie JE, Tracy RP, et al. Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus. Arthritis Rheum. 1999;42(1):51–60.

    CAS  PubMed  Google Scholar 

  20. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med. 2003;349(25):2399–406.

    CAS  PubMed  Google Scholar 

  21. Roman MJ, Crow MK, Lockshin MD, Devereux RB, Paget SA, Sammaritano L, et al. Rate and determinants of progression of atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2007;56(10):3412–9.

    CAS  PubMed  Google Scholar 

  22. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69.

    PubMed  Google Scholar 

  23. Uhlig K, Levey AS, Sarnak MJ. Traditional cardiac risk factors in individuals with chronic kidney disease. Semin Dial. 2003;16(2):118–27.

    PubMed  Google Scholar 

  24. Hermansen ML, Lindhardsen J, Torp-Pedersen C, Faurschou M, Jacobsen S. The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: a Danish nationwide population-based cohort study. Rheumatology. 2017;56(5):709–15.

    PubMed  Google Scholar 

  25. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chalmers SA, Chitu V, Ramanujam M, Putterman C. Therapeutic targeting of macrophages in lupus nephritis. Discov Med. 2015;20(108):43–9.

    PubMed  Google Scholar 

  28. Lazzari E, Jefferies CA. IRF5-mediated signaling and implications for SLE. Clin Immunol. 2014;153(2):343–52.

    CAS  PubMed  Google Scholar 

  29. Kalunian KC. Interferon-targeted therapy in systemic lupus erythematosus: is this an alternative to targeting B and T cells? Lupus. 2016;25(10):1097–101.

    CAS  PubMed  Google Scholar 

  30. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–16.

    CAS  PubMed  Google Scholar 

  31. Crow MK. Autoimmunity: interferon alpha or beta: which is the culprit in autoimmune disease? Nat Rev Rheumatol. 2016;12(8):439–40.

    CAS  PubMed  Google Scholar 

  32. Ruiz-Limon P, Barbarroja N, Perez-Sanchez C, Aguirre MA, Bertolaccini ML, Khamashta MA, et al. Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: effects of in vivo statin treatment. Ann Rheum Dis. 2015;74(7):1450–8.

    CAS  PubMed  Google Scholar 

  33. • Park JK, Kim JY, Moon JY, Ahn EY, Lee EY, Lee EB, et al. Altered lipoproteins in patients with systemic lupus erythematosus are associated with augmented oxidative stress: a potential role in atherosclerosis. Arthritis Res Ther. 2016;18(1):306 This study links the atherogenic potential of altered lipoprotein profiles and dysregulated metabolism in SLE to enhanced oxidative stress levels in patients.

    PubMed  PubMed Central  Google Scholar 

  34. • Boshuizen MC, Hoeksema MA, Neele AE, van der Velden S, Hamers AA, Van den Bossche J, et al. Interferon-beta promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine. 2016;77:220–6 Using both murine bone marrow–derived macrophages and human monocyte-derived macrophages, the authors demonstrate that type I interferons can promote foam cell formation by enhancing expression of the scavenger receptor SR-A and decreasing ABCA1 expression and hence cholesterol efflux.

    PubMed  Google Scholar 

  35. Smith S, Jefferies C. Role of DNA/RNA sensors and contribution to autoimmunity. Cytokine Growth Factor Rev. 2014;25(6):745–57.

    CAS  PubMed  Google Scholar 

  36. Marian V, Anolik JH. Treatment targets in systemic lupus erythematosus: biology and clinical perspective. Arthritis Res Ther. 2012;14(Suppl 4):S3.

    PubMed  PubMed Central  Google Scholar 

  37. Boshuizen MC, de Winther MP. Interferons as essential modulators of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(7):1579–88.

    CAS  PubMed  Google Scholar 

  38. Li F, Zhu X, Yang Y, Huang L, Xu J. TIPE2 alleviates systemic lupus erythematosus through regulating macrophage polarization. Cell Physiol Biochem. 2016;38(1):330–9.

    CAS  PubMed  Google Scholar 

  39. Labonte AC, Kegerreis B, Geraci NS, Bachali P, Madamanchi S, Robl R, et al. Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS One. 2018;13(12):e0208132.

    PubMed  PubMed Central  Google Scholar 

  40. Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, et al. TLR-3 stimulation skews M2 macrophages to M1 through IFN-alphabeta signaling and restricts tumor progression. Front Immunol. 2018;9:1650.

    PubMed  PubMed Central  Google Scholar 

  41. Li F, Yang Y, Zhu X, Huang L, Xu J. Macrophage polarization modulates development of systemic lupus erythematosus. Cell Physiol Biochem. 2015;37(4):1279–88.

    CAS  PubMed  Google Scholar 

  42. •• Kishimoto D, Kirino Y, Tamura M, Takeno M, Kunishita Y, Takase-Minegishi K, et al. Dysregulated heme oxygenase-1(low) M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons. Arthritis Res Ther. 2018;20(1):64 Here, the authors have identified Bach1, a transcription factor that negatively regulates HO-1 expression, as a type I IFN gene. They show that increased Bach1 expression as a result of IFN signaling leads to reduced HO-1 levels and decreased protection from oxidative stress. Characterization of a population of M2-like macrophages in kidney biopsies from SLE patients with nephritis shows that frequency of M2-like macrophages correlates with proteinurea.

    PubMed  PubMed Central  Google Scholar 

  43. Ramji DP, Davies TS. Cytokines in atherosclerosis: key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26(6):673–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding D, Su D, Li X, Li Z, Wang Y, Qiu J, et al. Serum levels of monocyte chemoattractant protein-1 and all-cause and cardiovascular mortality among patients with coronary artery disease. PLoS One. 2015;10(3):e0120633.

    PubMed  PubMed Central  Google Scholar 

  45. Tan C, Liu Y, Li W, Deng F, Liu X, Wang X, et al. Associations of matrix metalloproteinase-9 and monocyte chemoattractant protein-1 concentrations with carotid atherosclerosis, based on measurements of plaque and intima-media thickness. Atherosclerosis. 2014;232(1):199–203.

    CAS  PubMed  Google Scholar 

  46. McCarthy EM, Smith S, Lee RZ, Cunnane G, Doran MF, Donnelly S, et al. The association of cytokines with disease activity and damage scores in systemic lupus erythematosus patients. Rheumatology. 2014;53(9):1586–94.

    CAS  PubMed  Google Scholar 

  47. Zivkovic V, Cvetkovic T, Mitic B, Stamenkovic B, Stojanovic S, Radovanovic-Dinic B, et al. Monocyte chemoattractant protein-1 as a marker of systemic lupus erythematosus: an observational study. Rheumatol Int. 2018;38(6):1003–8.

    CAS  PubMed  Google Scholar 

  48. Lee YH, Song GG. Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis. Z Rheumatol. 2017;76(4):357–63.

    CAS  PubMed  Google Scholar 

  49. Tektonidou MG, Kravvariti E, Konstantonis G, Tentolouris N, Sfikakis PP, Protogerou A. Subclinical atherosclerosis in systemic lupus erythematosus: comparable risk with diabetes mellitus and rheumatoid arthritis. Autoimmun Rev. 2017;16(3):308–12.

    PubMed  Google Scholar 

  50. Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016;273(1):357–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mahajan A, Herrmann M, Munoz LE. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front Immunol. 2016;7:35.

    PubMed  PubMed Central  Google Scholar 

  52. Bai Y, Tong Y, Liu Y, Hu H. Self-dsDNA in the pathogenesis of systemic lupus erythematosus. Clin Exp Immunol. 2018;191(1):1–10.

    CAS  PubMed  Google Scholar 

  53. •• Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol. 2018;3(19). This study suggests that increased expression of TLR7, a key pathogenic factor in SLE, could be attributed to escaping X chromosome inactivation and therefore contributing to the increased risk of developing SLE in women.

  54. Magna M, Pisetsky DS. The role of cell death in the pathogenesis of SLE: is pyroptosis the missing link? Scand J Immunol. 2015;82(3):218–24.

    CAS  PubMed  Google Scholar 

  55. Colonna L, Lood C, Elkon KB. Beyond apoptosis in lupus. Curr Opin Rheumatol. 2014;26(5):459–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Martinez J. Prix Fixe: Efferocytosis as a four-course meal. Curr Top Microbiol Immunol. 2017;403:1–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Majai G, Kiss E, Tarr T, Zahuczky G, Hartman Z, Szegedi G, et al. Decreased apopto-phagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus. 2014;23(2):133–45.

    CAS  PubMed  Google Scholar 

  58. Jung JY, Suh CH. Incomplete clearance of apoptotic cells in systemic lupus erythematosus: pathogenic role and potential biomarker. Int J Rheum Dis. 2015;18(3):294–303.

    CAS  PubMed  Google Scholar 

  59. Wigren M, Nilsson J, Kaplan MJ. Pathogenic immunity in systemic lupus erythematosus and atherosclerosis: common mechanisms and possible targets for intervention. J Intern Med. 2015;278(5):494–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. • Wigren M, Svenungsson E, Mattisson IY, Gustafsson JT, Gunnarsson I, Zickert A, et al. Cardiovascular disease in systemic lupus erythematosus is associated with increased levels of biomarkers reflecting receptor-activated apoptosis. Atherosclerosis. 2018;270:1–7 This study demonstrates that increased risk of CVD in SLE patients is associated with elevated levels of biomarkers related to cell death—apoptosis (Fas, TNF receptor 1, TRAIL receptor 2) and tissue damage (MMP-1 and MMP-7).

    CAS  PubMed  Google Scholar 

  61. Yurdagul A Jr, Doran AC, Cai B, Fredman G, Tabas IA. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front Cardiovasc Med. 2017;4:86.

    PubMed  Google Scholar 

  62. Doring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol. 2015;35(2):288–95.

    PubMed  Google Scholar 

  63. Pende A, Artom N, Bertolotto M, Montecucco F, Dallegri F. Role of neutrophils in atherogenesis: an update. Eur J Clin Investig. 2016;46(3):252–63.

    Google Scholar 

  64. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30.

    CAS  PubMed  Google Scholar 

  65. Meegan JE, Yang X, Coleman DC, Jannaway M, Yuan SY. Neutrophil-mediated vascular barrier injury: role of neutrophil extracellular traps. Microcirculation. 2017;24(3). https://doi.org/10.1111/micc.12352.

    Google Scholar 

  66. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.

    PubMed  PubMed Central  Google Scholar 

  67. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu Y, Su K. Neutrophil extracellular traps and systemic lupus erythematosus. J Clin Cell Immunol. 2013;4.

  69. •• Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213(5):697–713 This paper shows in lupus neutrophils, normal neutrophils primed with IFN-a extrude interferogenic DNA, particularly oxidized form of mitochondrial DNA (Ox mtDNA). This type of DNA normally is degraded via the lysosomal pathway, not by mitophagy. Due to disturbed disassociation of mtDNA and TFAM, more Ox mtDNA accumulation is found in mitochondria of SLE neutrophils, which further causes higher type I interferon production. Also, based on the presence of anti-Ox mtDNA autoantibodies in SLE patients, the authors suggested that this type of autoantibody can be used as biomarker related to disease severity and/or unique clinical phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carlucci PM, Purmalek MM, Dey AK, Temesgen-Oyelakin Y, Sakhardande S, Joshi AA, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight. 2018;3(8).

  71. Carmona-Rivera C, Kaplan MJ. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol. 2013;35(4):455–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Avondt K, Fritsch-Stork R, Derksen RH, Meyaard L. Ligation of signal inhibitory receptor on leukocytes-1 suppresses the release of neutrophil extracellular traps in systemic lupus erythematosus. PLoS One. 2013;8(10):e78459.

    PubMed  PubMed Central  Google Scholar 

  73. Massena S, Christoffersson G, Vagesjo E, Seignez C, Gustafsson K, Binet F, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood. 2015;126(17):2016–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Denny MF, Thacker S, Mehta H, Somers EC, Dodick T, Barrat FJ, et al. Interferon-alpha promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood. 2007;110(8):2907–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Somers EC, Zhao W, Lewis EE, Wang L, Wing JJ, Sundaram B, et al. Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients. PLoS One. 2012;7(5):e37000.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewandowski LB, Kaplan MJ. Update on cardiovascular disease in lupus. Curr Opin Rheumatol. 2016;28(5):468–76.

    PubMed  PubMed Central  Google Scholar 

  77. Mak A, Kow NY. Imbalance between endothelial damage and repair: a gateway to cardiovascular disease in systemic lupus erythematosus. Biomed Res Int. 2014;2014:178721.

    PubMed  PubMed Central  Google Scholar 

  78. Sciatti E, Cavazzana I, Vizzardi E, Bonadei I, Fredi M, Taraborelli M, et al. “Systemic lupus erythematosus and endothelial dysfunction: a close relationship”, Curr Rheumatol Rev. 2019;15:1.

    CAS  PubMed  Google Scholar 

  79. Mohan S, Barsalou J, Bradley TJ, Slorach C, Reynolds JA, Hasni S, et al. Endothelial progenitor cell phenotype and function are impaired in childhood-onset systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(8):2257–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Buie JJ, Renaud LL, Muise-Helmericks R, Oates JC. IFN-alpha negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. J Immunol. 2017;199(6):1979–88.

    CAS  PubMed  Google Scholar 

  81. Reynolds JA, Haque S, Williamson K, Ray DW, Alexander MY, Bruce IN. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus. Sci Rep. 2016;6:22341.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Edwards N, Langford-Smith AWW, Wilkinson FL, Alexander MY. Endothelial progenitor cells: new targets for therapeutics for inflammatory conditions with high cardiovascular risk. Front Med (Lausanne). 2018;5:200.

    Google Scholar 

  83. Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Merched AJ, Daret D, Li L, Franzl N, Sauvage-Merched M. Specific autoantigens in experimental autoimmunity-associated atherosclerosis. FASEB J. 2016;30(6):2123–34.

    CAS  PubMed  Google Scholar 

  85. Olsen NJ, Li QZ, Quan J, Wang L, Mutwally A, Karp DR. Autoantibody profiling to follow evolution of lupus syndromes. Arthritis Res Ther. 2012;14(4):R174.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kiani AN, Vogel-Claussen J, Arbab-Zadeh A, Magder LS, Lima J, Petri M. Semiquantified noncalcified coronary plaque in systemic lupus erythematosus. J Rheumatol. 2012;39(12):2286–93.

    PubMed  PubMed Central  Google Scholar 

  87. Ballocca F, D’Ascenzo F, Moretti C, Omede P, Cerrato E, Barbero U, et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(11):1435–41.

    PubMed  Google Scholar 

  88. Perez-Sanchez C, Barbarroja N, Messineo S, Ruiz-Limon P, Rodriguez-Ariza A, Jimenez-Gomez Y, et al. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann Rheum Dis. 2015;74(7):1441–9.

    CAS  PubMed  Google Scholar 

  89. Berger JS, Rockman CB, Guyer KE, Lopez LR. Proatherogenic oxidized low-density lipoprotein/beta2-glycoprotein I complexes in arterial and venous disease. J Immunol Res. 2014;2014:234316.

    PubMed  PubMed Central  Google Scholar 

  90. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80.

    PubMed  Google Scholar 

  91. Nikolopoulou A, Kadoglou NP. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther. 2012;10(7):933–9.

    CAS  PubMed  Google Scholar 

  92. Meyers MR, Gokce N. Endothelial dysfunction in obesity: etiological role in atherosclerosis. Curr Opin Endocrinol Diabetes Obes. 2007;14(5):365–9.

    CAS  PubMed  Google Scholar 

  93. Otani H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal. 2011;15(7):1911–26.

    CAS  PubMed  Google Scholar 

  94. Ormseth MJ, Swift LL, Fazio S, Linton MF, Raggi P, Solus JF, et al. Free fatty acids are associated with metabolic syndrome and insulin resistance but not inflammation in systemic lupus erythematosus. Lupus. 2013;22(1):26–33.

    CAS  PubMed  Google Scholar 

  95. Chung CP, Oeser A, Solus JF, Gebretsadik T, Shintani A, Avalos I, et al. Inflammation- associated insulin resistance: differential effects in rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. Arthritis Rheum. 2008;58(7):2105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Parker B, Bruce I. SLE and metabolic syndrome. Lupus. 2013;22(12):1259–66.

    CAS  PubMed  Google Scholar 

  97. Parker B, Urowitz MB, Gladman DD, Lunt M, Bae SC, Sanchez-Guerrero J, et al. Clinical associations of the metabolic syndrome in systemic lupus erythematosus: data from an international inception cohort. Ann Rheum Dis. 2013;72(8):1308–14.

    PubMed  Google Scholar 

  98. del Aguila LF, Claffey KP, Kirwan JP. TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Phys. 1999;276(5):E849–55.

    Google Scholar 

  99. Hotamisligil GS. Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes Relat Metab Disord. 2000;24(Suppl 4):S23–7.

    CAS  PubMed  Google Scholar 

  100. Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100.

    PubMed  PubMed Central  Google Scholar 

  101. Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, et al. Role of leptin in the activation of immune cells. Mediat Inflamm. 2010;2010:568343.

    Google Scholar 

  102. Bouloumie A, Marumo T, Lafontan M, Busse R. Leptin induces oxidative stress in human endothelial cells. FASEB J. 1999;13(10):1231–8.

    CAS  PubMed  Google Scholar 

  103. Dong F, Zhang X, Ren J. Leptin regulates cardiomyocyte contractile function through endothelin-1 receptor-NADPH oxidase pathway. Hypertension. 2006;47(2):222–9.

    CAS  PubMed  Google Scholar 

  104. Beltowski J. Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens. 2006;24(5):789–801.

    CAS  PubMed  Google Scholar 

  105. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006;189(1):47–60.

    CAS  PubMed  Google Scholar 

  106. Garcia-Gonzalez A, Gonzalez-Lopez L, Valera-Gonzalez IC, Cardona-Munoz EG, Salazar- Paramo M, Gonzalez-Ortiz M, et al. Serum leptin levels in women with systemic lupus erythematosus. Rheumatol Int. 2002;22(4):138–41.

    PubMed  Google Scholar 

  107. McMahon M, Skaggs BJ, Sahakian L, Grossman J, FitzGerald J, Ragavendra N, et al. High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann Rheum Dis. 2011;70(9):1619–24.

    CAS  PubMed  Google Scholar 

  108. Hongo S, Watanabe T, Arita S, Kanome T, Kageyama H, Shioda S, et al. Leptin modulates ACAT1 expression and cholesterol efflux from human macrophages. Am J Physiol Endocrinol Metab. 2009;297(2):E474–82.

    CAS  PubMed  Google Scholar 

  109. Groh L, Keating ST, Joosten LAB, Netea MG, Riksen NP. Monocyte and macrophage immunometabolism in atherosclerosis. Semin Immunopathol. 2018;40(2):203–14.

    CAS  PubMed  Google Scholar 

  110. Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406.

    PubMed  Google Scholar 

  111. Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19(6):526–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. •• Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature. 2013;496(7444):238–42 This study identifies succinate as an important metabolite with roles beyond metabolism in which it is linked to changes in gene expression and innate immune signaling. The authors show that succinate acts as a danger signal which enhances interleukin-1β during inflammation in activated macrophages. Succinate’s role as an inflammatory mediator is important for the understanding of innate immunity in inflammatory settings.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol. 2008;28(2):718–31.

    CAS  PubMed  Google Scholar 

  114. Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.

    PubMed  PubMed Central  Google Scholar 

  115. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, et al. Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol. 2012;92(4):829–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 2015;7(274):274ra18.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ursini F, Russo E, Pellino G, D’Angelo S, Chiaravalloti A, De Sarro G, et al. Metformin and autoimmunity: a “new deal” of an old drug. Front Immunol. 2018;9:1236.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Jefferies.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systemic Lupus Erythematosus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumurkhuu, G., Montano, E. & Jefferies, C. Innate Immune Dysregulation in the Development of Cardiovascular Disease in Lupus. Curr Rheumatol Rep 21, 46 (2019). https://doi.org/10.1007/s11926-019-0842-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-019-0842-9

Keywords

Navigation