Skip to main content

Advertisement

Log in

An Update on Autoinflammatory Diseases: Inflammasomopathies

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autoinflammatory diseases are driven by abnormal innate immune activation. In the case of inflammasomopathies, these are all attributable to activation of an inflammasome complex, nucleated by an innate immune sensor such as NLRP3. This review will focus on recent advances that have helped to elucidate the role of three other sensors (NLRP1, NLRC4 and pyrin) which can also cause inflammasomopathies.

Recent Findings

Mutations in pyrin (S242R or E244K) destroy an inhibitory 14-3-3 binding site and result in the newly characterised disease pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). Moreover, a separate autoinflammatory disease driven by mevalonate kinase deficiency leads to defective RhoGTPase prenylation and subsequent loss of pyrin S242R phosphorylation, suggesting a shared mechanism of disease. Other inflammasomes such as NLRP1 and NLRC4 have had novel mutations described recently, which inform about the specific domains required for activation and autoinhibition.

Summary

This review covers recent advances in the study of inflammasomopathies, focussing on gene discoveries that elucidate new pathogenic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

    Article  PubMed  CAS  Google Scholar 

  2. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Broderick L, de Nardo D, Franklin BS, Hoffman HM, Latz E. The Inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.

    Article  PubMed  CAS  Google Scholar 

  4. Alghamdi M. Familial Mediterranean fever, review of the literature. Clin Rheumatol. 2017;36(8):1707–13.

    Article  PubMed  Google Scholar 

  5. • Masters SL, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine. 2016;8(332):332ra45. In identifying a novel pyrin-driven autoinflammatory disease, PAAND, Masters et al. also demonstrated the role of 14-3-3 in pyrin regulation.

    Article  PubMed  CAS  Google Scholar 

  6. Moghaddas F, Llamas R, de Nardo D, Martinez-Banaclocha H, Martinez-Garcia JJ, Mesa-del-Castillo P, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann Rheum Dis. 2017;76(12):2085–94.

    Article  PubMed  Google Scholar 

  7. • Xu H, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature. 2014;513(7517):237–41. Xu et al. demonstrated that modification of RhoGTPases by pathogens leads to activation of the pyrin inflammasome.

    Article  PubMed  CAS  Google Scholar 

  8. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control pyrin inflammasome activation. Proceedings of the National Academy of Sciences of the United States. 2016;113(33):E4857–66.

    Article  CAS  Google Scholar 

  9. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17(8):914–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhang S. Natural history of mevalonate kinase deficiency: a literature review. Pediatric Rheumatology Online Journal. 2016;14(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seabra MC. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 1998;10(3):167–72.

    Article  PubMed  CAS  Google Scholar 

  12. Gorp HV, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in pyrin inflammasome activation. Proceedings of the National Academy of Sciences of the United States. 2016;113(50):14384–9.

    Article  CAS  Google Scholar 

  13. Kim ML, Chae JJ, Park YH, de Nardo D, Stirzaker RA, Ko HJ, et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J Exp Med. 2015;212(6):927–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Waite AL, et al. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp Biol Med (Maywood). 2009;234(1):40–52.

    Article  CAS  Google Scholar 

  15. Goldfinger S. Colchicine for familial Mediterranean fever. N Engl J Med. 1972;287(25):1302.

    PubMed  CAS  Google Scholar 

  16. Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R, et al. Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum. 2004;33(4):273–82.

    Article  PubMed  CAS  Google Scholar 

  17. Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL, et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood. 2016;128(17):2135–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med. 2017;214(1):59–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kile BT, Panopoulos AD, Stirzaker RA, Hacking DF, Tahtamouni LH, Willson TA, et al. Mutations in the cofilin partner Aip1/Wdr1 cause autoinflammatory disease and macrothrombocytopenia. Blood. 2007;110(7):2371–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gershoni-Baruch R, Shinawi M, Leah K, Badarnah K, Brik R. Familial Mediterranean fever: prevalence, penetrance and genetic drift. European Journal Of Human Genetics: EJHG. 2001;9(8):634–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ratner D, et al. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLoS Pathog. 2016;12(12):1–17.

    Article  CAS  Google Scholar 

  22. Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.

    Article  PubMed  CAS  Google Scholar 

  23. Grandemange S, Sanchez E, Louis-Plence P, Tran Mau-Them F, Bessis D, Coubes C, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.

    Article  PubMed  Google Scholar 

  24. Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem. 2012;287(30):25030–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. • Zhong FL, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.e17. Zhong et al. describe two NLRP1-associated autoinflammatory diseases FKLC and MSPC. Furthermore, they demonstrate the that PYD domain of NLRP1 is autoinhibitory.

    Article  PubMed  CAS  Google Scholar 

  26. Soler VJ, Tran-Viet KN, Galiacy SD, Limviphuvadh V, Klemm TP, St Germain E, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mamaï O, Boussofara L, Denguezli M, Escande-Beillard N, Kraeim W, Merriman B, et al. Multiple self-healing palmoplantar carcinoma: a familial predisposition to skin cancer with primary palmoplantar and conjunctival lesions. J Investig Dermatol. 2015;135(1):304–8.

    Article  PubMed  CAS  Google Scholar 

  28. Adams S, et al. PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res. 2004;64(15):5471–80.

    Article  PubMed  CAS  Google Scholar 

  29. Walsh MP, et al. Val-BoroPro accelerates T cell priming via modulation of dendritic cell trafficking resulting in complete regression of established murine tumors. PLoS One. 2013;8(3):1–13.

    Google Scholar 

  30. Okondo MC, et al. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome. Cell Chem Biol. 2018;25:1-6.e1–5.

    Article  CAS  Google Scholar 

  31. Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ, Wang MS, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol. 2016;13(1):46–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211(12):2385–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jéru I, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Canna SW, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nature Genetics. 2014;46(10):1140–6. Published back to back with Romberg et al. (2014); Canna et al. describe recurrent MAS with early-onset enterocolitis driven by NLRC4 gain-of-function mutations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. • Romberg N, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nature Genetics. 2014;46(10):1135–9. Published back to back with Canna et al (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nordlander S, Pott J, Maloy KJ. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 2014;7(4):775–85.

    Article  PubMed  CAS  Google Scholar 

  38. Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, et al. Article: NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity. 2017;46(4):649–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci. 2010;107(50):21635–40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe. 2014;16(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  41. Scott W, Canna CG, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–701.

    Article  CAS  Google Scholar 

  42. Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 2013;341(6142):172–5.

    Article  PubMed  CAS  Google Scholar 

  43. El-gharbawy A, et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr Dev Pathol. 2017;20(6):498–505.

    Article  PubMed  Google Scholar 

  44. Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.

    Article  PubMed  CAS  Google Scholar 

  45. Moghaddas F, Zeng P, Zhang Y, Schützle H, Brenner S, Hofmann SR, et al. Autoinflammatory mutation in NLRC4 reveals an LRR-LRR oligomerization interface. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.04.033.

  46. Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Masters Lab, particularly Dr. Paul Baker and Dr. Fiona Moghaddas, for discussion and advice on this review.

Funding

S.L.M acknowledges funding from NHMRC grants (1144282, 1142354 and 1099262), The Sylvia and Charles Viertel Foundation, HHMI-Wellcome International Research Scholarship and GlaxoSmithKline. SD acknowledges funding from NHMRC ECF: GNT1143412.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sophia Davidson or Seth L. Masters.

Additional information

This article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harapas, C.R., Steiner, A., Davidson, S. et al. An Update on Autoinflammatory Diseases: Inflammasomopathies. Curr Rheumatol Rep 20, 40 (2018). https://doi.org/10.1007/s11926-018-0750-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-018-0750-4

Keywords

Navigation