New Developments in the Genetics of Inclusion Body Myositis

  • Kyla A. Britson
  • Stephanie Y. Yang
  • Thomas E. Lloyd
Inflammatory Muscle Disease (I Lundberg, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Inflammatory Muscle Disease

Abstract

Purpose of Review

Our goal is to review the recent literature pertaining to the genetics of sporadic inclusion body myositis (IBM).

Recent Findings

In a study of 252 IBM patients, the class II MHC allele HLA-DRB1*03:01 showed the most significant association with IBM, and that risk could be largely attributed to amino acids within the peptide-binding pocket. Candidate gene sequencing identified rare missense variants in proteins regulating protein homeostasis including VCP and SQSTM1. An unbiased approach employing exome sequencing of genes encoding rimmed vacuole proteins identified FYCO1 variants in IBM. Ongoing GWAS approaches may shed new light on genetic risk factors for IBM.

Summary

Many variants have been reported at an increased frequency in IBM in small studies; however, only HLA association has shown genome-wide significance. Future studies are needed to validate variants in larger cohorts and to understand the molecular roles these risk factors play in IBM.

Keywords

Inclusion body myositis HLA VCP SQSTM1 FYCO1 Follistatin 

Notes

Compliance With Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Needham M, Corbett A, Day T, Christiansen F, Fabian V, Mastaglia FL. Prevalence of sporadic inclusion body myositis and factors contributing to delayed diagnosis. J Clin Neurosci Elsevier Ltd. 2008;15:1350–3.CrossRefGoogle Scholar
  2. 2.
    Cortese A, Machado P, Morrow J, Dewar L, Hiscock A, Miller A, et al. Longitudinal observational study of sporadic inclusion body myositis: implications for clinical trials. Neuromuscul Disord. 2013;23:404–12.Google Scholar
  3. 3.
    Cox FM, Titulaer MJ, Sont JK, Wintzen AR, Verschuuren JJGM, Badrising UA. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain. 2011;134:3167–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, et al. Inclusion body myositis and myopathies. Ann Neurol. 1995;38:705–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Benveniste O, Guiguet M, Freebody J, Dubourg O, Squier W, Maisonobe T, et al. Long-term observational study of sporadic inclusion body myositis. Brain. 2011;134:3176–84.Google Scholar
  6. 6.
    Needham M, Mastaglia FL. Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol. 2007;6:620–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Dimitri D, Benveniste O, Dubourg O, Maisonobe T, Eymard B, Amoura Z, et al. Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis. Brain. 2006;129:986–95.Google Scholar
  8. 8.
    Benveniste O, Stenzel W, Hilton D, Marco J, Olivier S, Van EBGM. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol. 2015;129:611–24.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weihl CC, Mammen AL. Sporadic inclusion body myositis—a myodegenerative disease or an inflammatory myopathy. Neuropathol Appl Neurobiol. 2017;43:82–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Roda RH, Schindler AB, Blackstone C, Mammen AL, Corse AM, Lloyd TE. Laing distal myopathy pathologically resembling inclusion body myositis. Ann Clin Transl Neurol. 2014;1:1053–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leung DG, Taylor HA, Lindy AS, Basehore MJ, Mammen AL. A case of progressive quadriceps weakness and elevated creatine kinase level mimicking inclusion body myositis. Arthritis Care Res. 2014;66:328–33.CrossRefGoogle Scholar
  12. 12.
    Broccolini A, Gidaro T, Morosetti R, Mirabella M. Hereditary inclusion-body myopathy: clues on pathogenesis and possible therapy. Muscle Nerve. 2009;40:340–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Sivakumar K, Semino-Mora C, Dalakas MC. An inflammatory, familial, inclusion body myositis with autoimmune features and a phenotype identical to sporadic inclusion body myositis: studies in three families. Brain. 1997;120:653–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Ranque-Francois B, Maisonobe T, Dion E, Piette JC, Chauveheid MP, Amoura Z, et al. Familial inflammatory inclusion body myositis. Ann Rheum Dis. 2005;64:634–7.Google Scholar
  15. 15.
    Gang Q, Bettencourt C, Houlden H, Hanna MG, Machado PM. Genetic advances in sporadic inclusion body myositis. Curr Opin Rheumatol. 2015;27:586–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Lampe J, Gossrau G, Kempe A, Füssell M, Schwurack K, Schroder R, et al. Analysis of HLA class I and II alleles in sporadice inclusion-body myositis. J Neurol. 2003;250:1313–7.Google Scholar
  17. 17.
    Scott AP, Allcock RJN, Mastaglia F, Nishino I, Nonaka I, Laing N. Sporadic inclusion body myositis in Japanese is associated with the MHC ancestral haplotype 52.1. Neuromuscul Disord. 2006;16:311–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Badrising UA, Schreuder GM, Giphart MJ, Geleijns K, Verschuuren JJ, Wintzen AR, et al. Associations with autoimmune disorders and HLA class I and II antigens in inclusion body myositis. Neurology. 2004;63:2396–8.Google Scholar
  19. 19.
    Garlepp MJ, Laing B, Zilko PJ, Ollier W, Mastaglia FL. HLA associations with inclusion body myositis. Clin Exp Immunol. 1994;98:40–5.Google Scholar
  20. 20.
    Needham M, James I, Corbett A, Day T, Christiansen F, Phillips B, et al. Sporadic inclusion body myositis: phenotypic variability and influence of HLA-DR3 in a cohort of 57 Australian cases. J Neurol Neurosurg Psychiatry. 2008;79:1056–60.Google Scholar
  21. 21.
    Price P, Santoso L, Mastaglia F, Garlepp M, Kok CC, Allcock R, et al. Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with HLA-DR3. Tissue Antigens. 2003;64:575–80.Google Scholar
  22. 22.
    Mastaglia FL, Needham M, Scott A, James I, Zilko P, Day T, et al. Sporadic inclusion body myositis: HLA-DRB1 allele interactions influence disease risk and clinical phenotype. Neuromuscul Disord. 2009;19:763–5.Google Scholar
  23. 23.
    O'Hanlon TP, Carrick DM, Arnett FC, Reveille JD, Carrington M, Gao X, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1 and -DQA1 allelic profiles and motifs define clinicopathologic groups in Caucasians. Medicine. 2005;84:338–49.Google Scholar
  24. 24.
    • Johari M, Arumilli M, Palmio J, Savarese M, Tasca G, Mirabella M, et al. Association study reveals novel risk loci for sporadic inclusion body myositis. Eur J Neurol. 2017;24:572–7. This study identified novel variants within five genes: STARD3, SETD4, SGPL1, NOTCH4, and HLA-DQB1. The STARD3 and SGPL1 variants potentially indicate a role for sphingolipid dynamics in IBM pathology. CrossRefPubMedGoogle Scholar
  25. 25.
    Rojana-udomsart A, James I, Castley A, Needham M, Scott A, Day T, et al. High-resolution HLA-DRB1 genotyping in an Australian inclusion body myositis (s-IBM) cohort: an analysis of disease-associated alleles and diplotypes. J Neuroimmunol. 2012;250:77–82.Google Scholar
  26. 26.
    •• Rothwell S, Cooper RG, Lundberg IE, Gregersen PK, Hanna MG, Machado PM, et al. Immune-array analysis in sporadic inclusion body myositis reveals HLA–DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheum. 2017;69:1090–9. Rothwell et. al. have accomplished the largest genetic association study of IBM to date. This study confirms the importance of the HLA-DRB1 loci in the risk of developing IBM and this risk can be explained by specific amino acid variants within the HLA-DRB1 binding pocket. CrossRefGoogle Scholar
  27. 27.
    Mastaglia FL. Sporadic inclusion body myositis: variability in prevalence and phenotype and influence of the MHC. Acta Myol. 2009;28:66–71.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Limaye VS, Lester S, Blumbergs P, Greenberg SA. Anti-cN1A antibodies in South Australian patients with inclusion body myositis. Muscle Nerve. 2016;53:653–4.CrossRefGoogle Scholar
  29. 29.
    Kim K, Bang SY, Lee HS, Okada Y, Han B, Saw WY, et al. The HLA-DRβ1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun. 2014;5:5902.Google Scholar
  30. 30.
    • Rothwell S, Cooper RG, Lundberg IE, Miller FW, Gregersen PK, Bowes J, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis. 2016;75:1558–66. This report describes the largest genetic study of ideopathic inflammatory myopathies: Polymyositis, IBM, and adult and juvenial dermatomyositis. CrossRefPubMedGoogle Scholar
  31. 31.
    Scott AP, Laing NG, Mastaglia F, Dalakas M, Needham M, Allcock RJN. Investigation of NOTCH4 coding region polymorphisms in sporadic inclusion body myositis. J Neuroimmunol. 2012;250:66–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81.Google Scholar
  33. 33.
    Meyer H, Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci. 2014;127:3877–83.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68:857–64.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Koppers M, van Blitterswijk MM, Vlam L, Rowicka PA, van Vught PWJ, Groen EJN, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33:837.e7–837.e13.Google Scholar
  36. 36.
    Majounie E, Traynor BJ, Chiò A, Restagno G, Mandrioli J, Benatar M, et al. Mutational analysis of the VCP gene in Parkinson’s disease. Neurobiol Aging. 2012;33:209.e1–2.Google Scholar
  37. 37.
    Spina S, Van Laar AD, Murrell JR, Hamilton RL, Kofler JK, Epperson F, et al. Phenotypic variability in three families with valosin-containing protein mutation. Eur J Neurol. 2013;20:251–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Gonzalez MA, Feely SM, Speziani F, Strickland AV, Danzi M, Bacon C, et al. A novel mutation in VCP causes Charcot-Marie-Tooth type 2 disease. Brain. 2014;137:2897–902.Google Scholar
  39. 39.
    Benatar M, Wuu J, Fernandez C, Weihl CC, Katzen H, Steele J, et al. Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology. 2013;80:1874–80.Google Scholar
  40. 40.
    • Weihl CC, Baloh RH, Lee Y, Chou TF, Pittman SK, Lopate G, et al. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul Disord. 2015;25:289–96. This study utilitized a candidate gene sequencing approach to identify novel variants in IBM patients. Several genes were found to contain variants, including VCP, BAG3, FLNC, and HNRNPA2B1. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25:2131–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Behl C. BAG3 and friends: co-chaperones in selective autophagy during aging and disease. Autophagy. 2011;7:795–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Baixauli F, López-Otín C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:1–6.CrossRefGoogle Scholar
  44. 44.
    Nogalska A, Terracciano C, D’Agostino C, King Engel W, Askanas V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol. 2009;118:407–13.CrossRefPubMedGoogle Scholar
  45. 45.
    Dubourg O, Wanschitz J, Maisonobe T, Béhin A, Allenbach Y, Herson S, et al. Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol. 2011;30:103–8.Google Scholar
  46. 46.
    Ikenaga C, Kubota A, Kadoya M, Taira K, Uchio N, Hida A, et al. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology. Neurology. 2017;89:1060–8.Google Scholar
  47. 47.
    Kimonis VE, Fulchiero E, Vesa J, Watts G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta Mol basis Dis. 2008;1782:744–8.CrossRefGoogle Scholar
  48. 48.
    Rohrer JD, Warren JD, Reiman D, Uphill J, Beck J, Collinge J, et al. A novel exon 2 I27V VCP variant is associated with dissimilar clinical syndromes. J Neurol. 2011;258:1494–6.Google Scholar
  49. 49.
    Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009;187:875–88.Google Scholar
  50. 50.
    •• Gang Q, Bettencourt C, Machado PM, Brady S, Holton JL, Pittman AM, et al. Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol Aging. 2016;47:218.e1–9. This study identified SQSTM1/p62 and VCP variants in sporadic IBM patients. CrossRefGoogle Scholar
  51. 51.
    Cai H, Yabe I, Sato K, Kano T, Nakamura M, Hozen H, et al. Clinical, pathological, and genetic mutation analysis of sporadic inclusion body myositis in Japanese people. J Neurol. 2012;259:1913–22.Google Scholar
  52. 52.
    •• Güttsches AK, Brady S, Krause K, Maerkens A, Uszkoreit J, Eisenacher M, et al. Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol. 2017;81:227–39. Güttsches et. al. used a proteomic approach to identify novel rimmed vacuole containing proteins in IBM; they then used whole exome sequencing to find rare variants in these proteins associated with IBM. Of note, variants within FYCO1, an LC3 interacting protein, were found to be overrepresented in IBM patients. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Øvervatn A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol. 2010;188:253–69.Google Scholar
  54. 54.
    Ahmed M, Machado PM, Miller A, Spicer C, Herbelin L, He J, et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med. 2016;8:28–31.CrossRefGoogle Scholar
  55. 55.
    Lindgren U, Roos S, Hedberg Oldfors C, Moslemi AR, Lindberg C, Oldfors A. Mitochondrial pathology in inclusion body myositis. Neuromuscul Disord. 2015;25:281–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Oldfors A, Larsson NG, Lindberg C, Holme E. Mitochondrial DNA deletions in inclusion body myositis. Brain. 1993;116:325–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Oldfors A, Moslemi AR, Jonasson L, Ohlsson M, Kollberg G, Lindberg C. Mitochondrial abnormalities in inclusion-body myositis. Neurology. 2006;66:S49–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Rygiel KA, Miller J, Grady JP, Rocha MC, Taylor RW, Turnbull DM. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol. 2015;41:288–303.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Roses AD, Lutz MW, Crenshaw DG, Grossman I, Saunders AM, Gottschalk WK. TOMM40 and APOE: requirements for replication studies of association with age of disease onset and enrichment of a clinical trial. Alzheimers Dement. 2013;9:132–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Mastaglia FL, Rojana-udomsart A, James I, Needham M, Day TJ, Kiers L, et al. Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul Disord. 2013;23:969–74.Google Scholar
  61. 61.
    Gang Q, Bettencourt C, Machado PM, Fox Z, Brady S, Healy E, et al. The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol Aging. 2015;36:1766.e1–3.Google Scholar
  62. 62.
    Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.CrossRefPubMedGoogle Scholar
  63. 63.
    Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377:1723–32.Google Scholar
  64. 64.
    Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun Nature Publishing Group. 2017;8:16007.Google Scholar
  65. 65.
    Elkina Y, von Haehling S, Anker SD, Springer J. The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle. 2011;2:143–51.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kota J, Handy CR, Haidet AM, Montgomery CL, Eagle A, Rodino-Klapac LR, et al. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Sci Transl Med. 2009;1:1–8.CrossRefGoogle Scholar
  67. 67.
    Amato AA, Sivakumar K, Goyal N, David WS, Salajegheh M, Praestgaard J, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology. 2014;83:2239–46.Google Scholar
  68. 68.
    Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, et al. A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther. 2015;23:192–201.Google Scholar
  69. 69.
    Mendell JR, Sahenk Z, Al-Zaidy S, Rodino-Klapac LR, Lowes LP, Alfano LN, et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol Ther. 2017;25:870–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011;152:164–71.Google Scholar
  71. 71.
    Greenberg SA. Unfounded claims of improved functional outcomes attributed to follistatin gene therapy in inclusion body myositis. Mol Ther. 2017;25:2235–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Johnson LG, Collier KE, Edwards DJ, Philippe DL, Eastwood PR, Walters SE, et al. Improvement in aerobic capacity after an exercise program in sporadic inclusion body myositis. J Clin Neuromuscul Dis. 2009;10:178–84.Google Scholar
  73. 73.
    Spector SA, Lemmer JT, Koffman BM, Fleisher TA, Feuerstein IM, Hurley BF, et al. Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve. 1997;20:1242–8.Google Scholar
  74. 74.
    Arnardottir S, Alexanderson H, Lundberg IE, Borg K. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology, and inflammatory reaction. J Rehabil Med. 2002;35:31–5.Google Scholar
  75. 75.
    Alexanderson H, Lundberg IE. Exercise as a therapeutic modality in patients with idiopathic inflammatory myopathies. Curr Opin Rheumatol. 2012;24:201–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kyla A. Britson
    • 1
    • 2
  • Stephanie Y. Yang
    • 1
    • 3
  • Thomas E. Lloyd
    • 1
  1. 1.Departments of Neurology and NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Graduate program in Cellular and Molecular MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Graduate program in Human GeneticsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations