Advertisement

Calcium-Containing Crystals and Osteoarthritis: an Unhealthy Alliance

  • Richard Conway
  • Geraldine M. McCarthy
Crystal Arthritis (L Stamp, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Crystal Arthritis

Abstract

Purpose of Review

Osteoarthritis (OA) is the most common form of joint disease globally and is associated with significant morbidity and disability. Increasing evidence points to an important inflammatory component in the development and progression of OA. The precise pathways involved in OA inflammatory processes remain to be clarified. Basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals can induce inflammation and arthritis and recent studies point to a potential pathogenic role in OA. In the light of this evidence, we explore the relationship and potential mechanistic pathways linking calcium-containing crystals and OA.

Recent Findings

CPP crystals induce inflammation through the NLRP3 inflammasome while BCP crystals mediate both NLRP3 dependent and independent effects. BCP crystals have been demonstrated to induce key mitogenic and inflammatory pathways and contribute to cartilage degradation.

Summary

Calcium-containing crystals induce key inflammatory pathways and may represent an attractive novel target in OA, a condition devoid of effective treatments.

Keywords

BCP CPPD Osteoarthritis Crystal Inflammation 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Disclosures

No funding was received for this manuscript. The authors have no conflicts of interest in relation to the current work.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–602..Google Scholar
  2. 2.
    Conway R, McCarthy GM. Obesity and osteoarthritis: more than just mechanics. EMJ Rheumatol. 2015;2(1):75–83.Google Scholar
  3. 3.
    Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–69.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1603–58..Google Scholar
  5. 5.
    Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis -- results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil. 2005;13(5):361–7.  https://doi.org/10.1016/j.joca.2005.01.005.CrossRefPubMedGoogle Scholar
  6. 6.
    Baker K, Grainger A, Niu J, Clancy M, Guermazi A, Crema M, et al. Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis. 2010;69(10):1779–83.  https://doi.org/10.1136/ard.2009.121426.CrossRefPubMedGoogle Scholar
  7. 7.
    Spector TD, Hart DJ, Nandra D, Doyle DV, Mackillop N, Gallimore JR, et al. Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum. 1997;40(4):723–7.  https://doi.org/10.1002/art.1780400419.CrossRefPubMedGoogle Scholar
  8. 8.
    Smith MD, Triantafillou S, Parker A, Youssef PP, Coleman M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol. 1997;24(2):365–71.PubMedGoogle Scholar
  9. 9.
    Derfus BA, Kurian JB, Butler JJ, Daft LJ, Carrera GF, Ryan LM, et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol. 2002;29(3):570–4.PubMedGoogle Scholar
  10. 10.
    McCarty DJ, Halverson PB, Carrera GF, Brewer BJ, Kozin F. “Milwaukee shoulder”--association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum. 1981;24(3):464–73.  https://doi.org/10.1002/art.1780240303.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang W, Doherty M, Bardin T, Barskova V, Guerne PA, Jansen TL, et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis f. 2011;70(4):563–70.  https://doi.org/10.1136/ard.2010.139105.CrossRefGoogle Scholar
  12. 12.
    Dahaghin S, Bierma-Zeinstra SM, Ginai AZ, Pols HA, Hazes JM, Koes BW. Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study). Ann Rheum Dis. 2005;64(5):682–7.  https://doi.org/10.1136/ard.2004.023564.CrossRefPubMedGoogle Scholar
  13. 13.
    Dahaghin S, Bierma-Zeinstra SM, Reijman M, Pols HA, Hazes JM, Koes BW. Prevalence and determinants of one month hand pain and hand related disability in the elderly (Rotterdam study). Ann Rheum Dis. 2005;64(1):99–104.  https://doi.org/10.1136/ard.2003.017087.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.  https://doi.org/10.1016/S0140-6736(12)61729-2.CrossRefPubMedGoogle Scholar
  15. 15.
    Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1323–30.  https://doi.org/10.1136/annrheumdis-2013-204763.CrossRefPubMedGoogle Scholar
  16. 16.
    Piscitelli P, Iolascon G, Di Tanna G, Bizzi E, Chitano G, Argentiero A, et al. Socioeconomic burden of total joint arthroplasty for symptomatic hip and knee osteoarthritis in the Italian population: a 5-year analysis based on hospitalization records. Arthritis Care Res (Hoboken). 2012;64(9):1320–7.  https://doi.org/10.1002/acr.21706.CrossRefGoogle Scholar
  17. 17.
    Rodriguez-Fontenla C, Calaza M, Evangelou E, Valdes AM, Arden N, Blanco FJ, et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol (Hoboken, NJ). 2014;66(4):940–9.CrossRefGoogle Scholar
  18. 18.
    Sowers M, Jannausch M, Stein E, Jamadar D, Hochberg M, Lachance L. C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthr Cartil. 2002;10(8):595–601.  https://doi.org/10.1053/joca.2002.0800.CrossRefPubMedGoogle Scholar
  19. 19.
    Kerkhof HJ, Bierma-Zeinstra SM, Castano-Betancourt MC, de Maat MP, Hofman A, Pols HA, et al. Serum C reactive protein levels and genetic variation in the CRP gene are not associated with the prevalence, incidence or progression of osteoarthritis independent of body mass index. Ann Rheum Dis. 2010;69(11):1976–82.  https://doi.org/10.1136/ard.2009.125260.CrossRefPubMedGoogle Scholar
  20. 20.
    Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, et al. Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr Cartil. 2010;18(11):1441–7.  https://doi.org/10.1016/j.joca.2010.08.016.CrossRefPubMedGoogle Scholar
  21. 21.
    Damman W, Liu R, Bloem JL, Rosendaal FR, Reijnierse M, Kloppenburg M. Bone marrow lesions and synovitis on MRI associate with radiographic progression after 2 years in hand osteoarthritis. Ann Rheum Dis. 2017;76(1):214–7.  https://doi.org/10.1136/annrheumdis-2015-209036.CrossRefPubMedGoogle Scholar
  22. 22.
    Sarmanova A, Hall M, Moses J, Doherty M, Zhang W. Synovial changes detected by ultrasound in people with knee osteoarthritis - a meta-analysis of observational studies. Osteoarthr Cartil. 2016;24(8):1376–83.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis - analytical approaches and challenges. Analyst. 2008;133(3):302–18.  https://doi.org/10.1039/b716791a.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McCarty DJ, Lehr JR, Halverson PB. Crystal populations in human synovial fluid. Identification of apatite, octacalcium phosphate, and tricalcium phosphate. Arthritis Rheum. 1983;26(10):1220–4.  https://doi.org/10.1002/art.1780261008.CrossRefPubMedGoogle Scholar
  25. 25.
    MacMullan P, McMahon G, McCarthy G. Detection of basic calcium phosphate crystals in osteoarthritis. Joint Bone Spine. 2011;78(4):358–63.  https://doi.org/10.1016/j.jbspin.2010.10.008.CrossRefPubMedGoogle Scholar
  26. 26.
    Dieppe PA, Crocker P, Huskisson EC, Willoughby DA. Apatite deposition disease. A New Arthropathy. Lancet. 1976;1(7954):266–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Halverson PB, McCarty DJ, Cheung HS, Ryan LM. Milwaukee shoulder syndrome: eleven additional cases with involvement of the knee in seven (basic calcium phosphate crystal deposition disease). Semin Arthritis Rheum. 1984;14(1):36–44.  https://doi.org/10.1016/0049-0172(84)90007-6.CrossRefPubMedGoogle Scholar
  28. 28.
    Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y, et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 2009;60(9):2694–703.  https://doi.org/10.1002/art.24774.CrossRefPubMedGoogle Scholar
  29. 29.
    Nalbant S, Martinez JA, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR Jr. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr Cartil. 2003;11(1):50–4.  https://doi.org/10.1053/joca.2002.0861.CrossRefPubMedGoogle Scholar
  30. 30.
    Lumbreras B, Pascual E, Frasquet J, Gonzalez-Salinas J, Rodriguez E, Hernandez-Aguado I. Analysis for crystals in synovial fluid: training of the analysts results in high consistency. Ann Rheum Dis. 2005;64(4):612–5.  https://doi.org/10.1136/ard.2004.027268.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kohn NN, Hughes RE, Mc CD Jr, Faires JS. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the “pseudogout syndrome”. II. Identification of crystals. Ann Intern Med. 1962;56(5_Part_1):738–45.  https://doi.org/10.7326/0003-4819-56-5-738.CrossRefPubMedGoogle Scholar
  32. 32.
    Fam AG, Morava-Protzner I, Purcell C, Young BD, Bunting PS, Lewis AJ. Acceleration of experimental lapine osteoarthritis by calcium pyrophosphate microcrystalline synovitis. Arthritis Rheum. 1995;38(2):201–10.  https://doi.org/10.1002/art.1780380208.CrossRefPubMedGoogle Scholar
  33. 33.
    Rosenthal AK. Crystals, inflammation, and osteoarthritis. Curr Opin Rheumatol. 2011;23(2):170–3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Low C, Conway R, O'Shea FD. Pseudo pseudogout. Ir Med J. 2014;107(10):333–4.PubMedGoogle Scholar
  35. 35.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.  https://doi.org/10.1038/nature04516.CrossRefPubMedGoogle Scholar
  36. 36.
    Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science (New York, NY). 2010;327(5963):296–300.CrossRefGoogle Scholar
  37. 37.
    Pazar B, Ea HK, Narayan S, Kolly L, Bagnoud N, Chobaz V, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1beta secretion through the NLRP3 inflammasome in vitro. J Immunol. 2011;186(4):2495–502.  https://doi.org/10.4049/jimmunol.1001284.CrossRefPubMedGoogle Scholar
  38. 38.
    •• Ea HK, Chobaz V, Nguyen C, Nasi S, van Lent P, Daudon M, et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PloS One. 2013;8(2):e57352. This paper demonstrates that BCP crystal effects may be mediated by pathways independent of the NLRP3 inflammasome. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    McCarthy GM, Westfall PR, Masuda I, Christopherson PA, Cheung HS, Mitchell PG. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann Rheum Dis. 2001;60(4):399–406.  https://doi.org/10.1136/ard.60.4.399.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Molloy ES, Morgan MP, Doherty GA, McDonnell B, O'Byrne J, Fitzgerald DJ, et al. Mechanism of basic calcium phosphate crystal-stimulated matrix metalloproteinase-13 expression by osteoarthritic synovial fibroblasts: inhibition by prostaglandin E2. Ann Rheum Dis. 2008;67(12):1773–9.  https://doi.org/10.1136/ard.2007.079582.CrossRefPubMedGoogle Scholar
  41. 41.
    Cunningham CC, Mills E, Mielke LA, O'Farrell LK, Lavelle E, Mori A, et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin Immunol (Orlando, Fla). 2012;144(3):228–36.CrossRefGoogle Scholar
  42. 42.
    • Corr EM, Cunningham CC, Helbert L, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res Ther. 2017;19(1):23. This paper demonstrates that the effects of BCP crystals are mediated by the membrane-proximal tyrosine kinases Syk and PI3K. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grandjean-Laquerriere A, Tabary O, Jacquot J, Richard D, Frayssinet P, Guenounou M, et al. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials. 2007;28(3):400–4.  https://doi.org/10.1016/j.biomaterials.2006.09.015.CrossRefPubMedGoogle Scholar
  44. 44.
    Molloy ES, Morgan MP, Doherty GA, McDonnell B, O'Byrne J, Fitzgerald DJ, et al. Microsomal prostaglandin E2 synthase 1 expression in basic calcium phosphate crystal-stimulated fibroblasts: role of prostaglandin E2 and the EP4 receptor. Osteoarthr Cartil. 2009;17(5):686–92.  https://doi.org/10.1016/j.joca.2008.09.014.CrossRefPubMedGoogle Scholar
  45. 45.
    Molloy ES, Morgan MP, Doherty GA, McDonnell B, Hilliard M, O'Byrne J, et al. Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology (Oxford). 2008;47(7):965–71.  https://doi.org/10.1093/rheumatology/ken144.CrossRefGoogle Scholar
  46. 46.
    Sun Y, Mauerhan DR, Honeycutt PR, Kneisl JS, Norton HJ, Zinchenko N, et al. Calcium deposition in osteoarthritic meniscus and meniscal cell culture. Arthritis Res Ther. 2010;12(2):R56.  https://doi.org/10.1186/ar2968.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ea HK, Uzan B, Rey C, Liote F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res Ther. 2005;7(5):R915–26.  https://doi.org/10.1186/ar1763.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    •• Nasi S, So A, Combes C, Daudon M, Busso N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann Rheum Dis. 2016;75(7):1372–9. Key paper showing the feedback loop between IL-6 and BCP. CrossRefPubMedGoogle Scholar
  49. 49.
    Ea HK, Monceau V, Camors E, Cohen-Solal M, Charlemagne D, Liote F. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann Rheum Dis. 2008;67(11):1617–25.  https://doi.org/10.1136/ard.2008.087718.CrossRefPubMedGoogle Scholar
  50. 50.
    Nguyen C, Lieberherr M, Bordat C, Velard F, Come D, Liote F, et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthr Cartil. 2012;20(11):1399–408.  https://doi.org/10.1016/j.joca.2012.07.017.CrossRefPubMedGoogle Scholar
  51. 51.
    • Chang CC, Tsai YH, Liu Y, Lin SY, Liang YC. Calcium-containing crystals enhance receptor activator of nuclear factor kappaB ligand/macrophage colony-stimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology (Oxford). 2015;54(10):1913–22. This paper shows that calcium-containing crystals enhance RANKL/M-CSF-induced osteoclastogenesis through extracellular-signal-regulated kinase and p38 pathways. CrossRefGoogle Scholar
  52. 52.
    • Cunningham CC, Corr EM, McCarthy GM, Dunne A. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthritis Cartilage. 2016;24(12):2141–52. This important paper demonstrates the effects of BCP in inhibiting anti-osteoclastogenic signalling through both IL-6 and IFN-γ pathways through activation of p38 and ERK MAPK as well as JNK. CrossRefPubMedGoogle Scholar
  53. 53.
    Auw Yang KG, Raijmakers NJ, van Arkel ER, Caron JJ, Rijk PC, Willems WJ, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthr Cartil. 2008;16(4):498–505.  https://doi.org/10.1016/j.joca.2007.07.008.CrossRefPubMedGoogle Scholar
  54. 54.
    Chevalier X, Goupille P, Beaulieu AD, Burch FX, Bensen WG, Conrozier T, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61(3):344–52.  https://doi.org/10.1002/art.24096.CrossRefPubMedGoogle Scholar
  55. 55.
    Tew WP, Malis CD, Howard JE, Lehninger AL. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo. Proc Natl Acad Sci U S A. 1981;78(9):5528–32.  https://doi.org/10.1073/pnas.78.9.5528.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Shankar R, Crowden S, Sallis JD. Phosphocitrate and its analogue N-sulpho-2-amino tricarballylate inhibit aortic calcification. Atherosclerosis. 1984;52(2):191–8.  https://doi.org/10.1016/0021-9150(84)90117-5.CrossRefPubMedGoogle Scholar
  57. 57.
    Sun Y, Haines N, Roberts A, Ruffolo M, Mauerhan DR, Mihalko KL, et al. Disease-modifying effects of phosphocitrate and phosphocitrate-β-ethyl ester on partial meniscectomy-induced osteoarthritis. BMC Musculoskelet Disord. 2015;16(1):270.  https://doi.org/10.1186/s12891-015-0724-x.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cheung HS, Sallis JD, Struve JA. Specific inhibition of basic calcium phosphate and calcium pyrophosphate crystal-induction of metalloproteinase synthesis by phosphocitrate. Biochim Biophys Acta. 1996;1315(2):105–11.  https://doi.org/10.1016/0925-4439(95)00106-9.CrossRefPubMedGoogle Scholar
  59. 59.
    Nair D, Misra RP, Sallis JD, Cheung HS. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem. 1997;272(30):18920–5.  https://doi.org/10.1074/jbc.272.30.18920.CrossRefPubMedGoogle Scholar
  60. 60.
    Sun Y, Reuben P, Wenger L, Sallis JD, Demadis KD, Cheung HS. Inhibition of calcium phosphate-DNA coprecipitates induced cell death by phosphocitrates. Front Biosci. 2005;10(1-3):803–8.  https://doi.org/10.2741/1574.CrossRefPubMedGoogle Scholar
  61. 61.
    Sun Y, Franklin AM, Mauerhan DR, Hanley EN. Biological effects of phosphocitrate on osteoarthritic articular chondrocytes. Open Rheumatol J. 2017;11(1):62–74.  https://doi.org/10.2174/1874312901711010062.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cheung HS, Sallis JD, Demadis KD, Wierzbicki A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 2006;54(8):2452–61.  https://doi.org/10.1002/art.22017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RheumatologySt. James’s HospitalDublin 8Ireland
  2. 2.Department of RheumatologyMater Misericordiae University Hospital, Dublin Academic Medical CentreDublin 7Ireland

Personalised recommendations