Advertisement

Peripheral Mechanisms Contributing to Osteoarthritis Pain

  • Delfien Syx
  • Phuong B. Tran
  • Rachel E. Miller
  • Anne-Marie Malfait
Chronic Pain (R Staud, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Chronic Pain

Abstract

Purpose of Review

Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability worldwide. OA-associated pain is usually refractory to classically used analgesics, and disease-modifying therapies are still lacking. Therefore, a better understanding of mechanisms and mediators contributing to the generation and maintenance of OA pain is critical for the development of efficient and safe pain-relieving therapies.

Recent Findings

Both peripheral and central mechanisms contribute to OA pain. Clinical evidence suggests that a strong peripheral nociceptive drive from the affected joint maintains pain and central sensitization associated with OA. Mediators present in the OA joint, including nerve growth factor, chemokines, cytokines, and inflammatory cells can contribute to sensitization. Furthermore, structural alterations in joint innervation and nerve damage occur in the course of OA.

Summary

Several interrelated pathological processes, including joint damage, structural reorganization of joint afferents, low-grade inflammation, neuroplasticity, and nerve damage all contribute to the pain observed in OA. It can be anticipated that elucidating exactly how these mechanisms are operational in the course of progressive OA may lead to the identification of novel targets for intervention.

Keywords

Osteoarthritis Pain Peripheral Sensitization Inflammation Innervation 

Notes

Funding Information

Delfien Syx is a postdoctoral fellow of the Research Foundation—Flanders (FWO). Rachel Miller is supported by the US National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH/NIAMS) (K01AR070328). Anne-Marie Malfait (R01AR064251 and R01AR060364) is supported by NIAMS.

Compliance with Ethical Standards

Conflict of Interest

Dr. Malfait reports personal fees from Regeneron, personal fees from Eli Lilly, personal fees from Pfizer, personal fees from Galapagos, outside the submitted work.

Delfien Syx, Phuong B. Tran and Rachel E. Miller declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Malfait AM, Block JA. Osteoarthritis. In: editor. Encyclopedia of inflammatory diseases 2015.Google Scholar
  2. 2.
    Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800.Google Scholar
  3. 3.
    Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis rheum. 2006;54:226–9.Google Scholar
  4. 4.
    Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil. 2013;21(9):1145–53.  https://doi.org/10.1016/j.joca.2013.03.018.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention (CDC). Prevalence of disabilities and associated health conditions among adults—United States, 1999. MMWR Morb Mortal Wkly Rep. 2001;50:120–5.Google Scholar
  6. 6.
    •• Osteoarthritis: a serious disease in White Paper Submitted to the U.S. Food and Drug Administration, Pre Competitive Consortium for Osteoarthritis Osteoarthritis Research Society International. https://www.oarsi.org/sites/default/files/docs/2016/oarsi_white_paper_oa_serious_disease_121416_1.pdf. This White Paper clearly describes why osteoarthritis should be considered a serious disease. It contains detailed information on epidemiology, morbidity, and treatment of osteoarthritis.
  7. 7.
    Hawker GA, Croxford R, Bierman AS, Harvey PJ, Ravi B, Stanaitis I, et al. All-cause mortality and serious cardiovascular events in people with hip and knee osteoarthritis: a population based cohort study. PLoS One 2014;9:e91286,  https://doi.org/10.1371/journal.pone.0091286.
  8. 8.
    Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012;64(4):465–74.  https://doi.org/10.1002/acr.21596.CrossRefGoogle Scholar
  9. 9.
    Grosser T, Woolf CJ, G A. Time for nonaddictive relief of pain. Sci Am Assoc Adv Sci. 2017;355(6329):1026–7.  https://doi.org/10.1126/science.aan0088.Google Scholar
  10. 10.
    Miller RE, Block JA, Malfait A-M. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr Opin Rheumatol. 2017;29(1):110–8.  https://doi.org/10.1097/BOR.0000000000000354.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lane NE, Corr M. Osteoarthritis in 2016: anti-NGF treatments for pain—two steps forward, one step back? Nat Rev Rheumatol. 2017;13(2):76–8.  https://doi.org/10.1038/nrrheum.2016.224.PubMedCrossRefGoogle Scholar
  12. 12.
    Roemer FW, Miller CG, West CR, Brown MT, Sherlock SP, Kompel AJ, et al. Development of an imaging mitigation strategy for patient enrolment in the tanezumab nerve growth factor inhibitor (NGF-ab) program with a focus on eligibility assessment. Semin Arthritis Rheum 2017;in press, doi:  https://doi.org/10.1016/j.semarthrit.2017.05.008.
  13. 13.
    Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol. 2013;9(8):485–97.  https://doi.org/10.1038/nrrheum.2013.72.PubMedCrossRefGoogle Scholar
  14. 14.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.Google Scholar
  15. 15.
    Scanzello CR. Role of low-grade inflammation in osteoarthritis. Curr Opin Rheumatol. 2017;29(1):79–85.  https://doi.org/10.1097/BOR.0000000000000353.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord. 2008;9:116.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hannan MT, Felson DT, Pincus T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol. 2000;27(6):1513–7.PubMedGoogle Scholar
  18. 18.
    Hassan H, Walsh DA. Central pain processing in osteoarthritis: implications for treatment. Pain Manag 2014;4:45–56.Google Scholar
  19. 19.
    Lluch E, Torres R, Nijs J, Van Oosterwijck J. Evidence for central sensitization in patients with osteoarthritis pain: a systematic literature review. Eur J Pain. 2014;18(10):1367–75.  https://doi.org/10.1002/j.1532-2149.2014.499.x.PubMedCrossRefGoogle Scholar
  20. 20.
    Finan PH, Buenaver LF, Bounds SC, Hussain S, Park RJ, Haque UJ, et al. Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum. 2013;65:363–72.Google Scholar
  21. 21.
    Woolf CJ. Central Sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Clauw DJ, Hassett AL. The role of centralised pain in osteoarthritis. Clin Exp Rheumatol. 2017;35(Suppl 107):79–84.PubMedGoogle Scholar
  23. 23.
    Suokas AK, Walsh DA, McWilliams DF, Condon L, Moreton B, Wylde V, et al. Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil. 2012;20(10):1075–85.  https://doi.org/10.1016/j.joca.2012.06.009.PubMedCrossRefGoogle Scholar
  24. 24.
    Schaible H-G, Richter F, Ebersberger A, Boettger MK, Vanegas H, Natura G, et al. Joint pain. Exp Brain Res. 2009;196:153–62.Google Scholar
  25. 25.
    Malfait A-M, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol. 2013;9(11):654–64.  https://doi.org/10.1038/nrrheum.2013.138.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Creamer P, Hunt M, Dieppe P. Pain Mechanisms in osteoarthritis of the knee: effect of intraarticular anesthetic. J Rheumatol. 1996;23:1031–6.PubMedGoogle Scholar
  27. 27.
    Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ open. 2012;2:e000435.Google Scholar
  28. 28.
    Graven-Nielsen T, Wodehouse T, Langford RM, Arendt-Nielsen L, Kidd BL. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum. 2012;64:2907–16.Google Scholar
  29. 29.
    Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum. 2010;62:2930–40.Google Scholar
  30. 30.
    Little CB, Zaki S. What constitutes an “animal model of osteoarthritis”—the need for consensus? Osteoarthr Cartil. 2012;20(4):261–7.  https://doi.org/10.1016/j.joca.2012.01.017.PubMedCrossRefGoogle Scholar
  31. 31.
    Fang H, Beier F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol. 2014;10(7):413–21.  https://doi.org/10.1038/nrrheum.2014.46.PubMedCrossRefGoogle Scholar
  32. 32.
    Malfait A-M, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther. 2015;17:225.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kalbhen DA. Chemical model of osteoarthritis—a pharmacological evaluation. J Rheumatol. 1987;14 Spec No:130–1.PubMedGoogle Scholar
  34. 34.
    Pitcher T, Sousa-Valente J, Malcangio M. The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp 2016;e53746–6.Google Scholar
  35. 35.
    Thakur M, Rahman W, Hobbs C, Dickenson AH, Bennett DLH. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLoS One 2012;7:e33730,  https://doi.org/10.1371/journal.pone.0033730.
  36. 36.
    van der Kraan PM, Vitters EL, van Beuningen HM, van de Putte LB, van den Berg WB. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J Exp Pathol (Oxford). 1990;71:19–31.Google Scholar
  37. 37.
    Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12:R130.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Malfait AM, Little CB, MD JJ. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr Cartil. 2013;21(9):1316–26.  https://doi.org/10.1016/j.joca.2013.06.003.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.  https://doi.org/10.1016/j.cell.2009.09.028.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    • Miller RE, Ishihara S, Bhattacharyya B, Delaney A, Menichella DM, Miller RJ, et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis. Arthritis Rheumatol. 2017;69:1439–9. This paper describes the first chemogenetic approaches in experimental OA, revealing that blockade of firing in nociceptors reversed sensitization in early but not late stages of OA. Google Scholar
  41. 41.
    Knights CB, Gentry C, Bevan S. Partial Medial meniscectomy produces osteoarthritis pain-related behaviour in female C57BL/6 mice. Pain. 2012;153:281–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Ferreira-Gomes J, Adães S, Castro-Lopes JM. Assessment of movement-evoked pain in osteoarthritis by the knee-bend and CatWalk tests: a clinically relevant study. J Pain. 2008;9(10):945–54.  https://doi.org/10.1016/j.jpain.2008.05.012.PubMedCrossRefGoogle Scholar
  43. 43.
    Schuelert N, Zhang C, Mogg AJ, Broad LM, Hepburn DL, Nisenbaum ES, et al. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain. Osteoarthr Cartil. 2010;18(11):1536–43.  https://doi.org/10.1016/j.joca.2010.09.005.PubMedCrossRefGoogle Scholar
  44. 44.
    Schuelert N, Johnson MP, Oskins JL, Jassal K, Chambers MG, McDougall JJ. Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis. Pain. 2011;152(5):975–81.  https://doi.org/10.1016/j.pain.2010.11.025.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim YS, Anderson M, Park K, Zheng Q, Agarwal A, Gong C, et al. Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain. Neuron. 2016;91:1085–96.Google Scholar
  46. 46.
    Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.  https://doi.org/10.1038/nn.3881.PubMedCrossRefGoogle Scholar
  47. 47.
    Abraira VE, Ginty DD. The sensory neurons of touch. Neuron. 2013;79(4):618–39.  https://doi.org/10.1016/j.neuron.2013.07.051.PubMedCrossRefGoogle Scholar
  48. 48.
    Emery EC, Luiz AP, Sikandar S, Magnúsdóttir R, Dong X, Wood JN. In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP. Sci Adv. 2016;2:e1600990.Google Scholar
  49. 49.
    Smith-Edwards KM, DeBerry JJ, Saloman JL, Davis BM, Woodbury CJ. Profound alteration in cutaneous primary afferent activity produced by inflammatory mediators. Elife. 2016;5:1494.CrossRefGoogle Scholar
  50. 50.
    Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk E, Handwerker H. Novel Classes of responsive and unresponsive C nociceptors in human skin. J Neurosci. 1995;15:333–41.PubMedGoogle Scholar
  51. 51.
    Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40(1):307–25.  https://doi.org/10.1146/annurev-neuro-072116-031121.PubMedCrossRefGoogle Scholar
  52. 52.
    Petty BG, Cornblath DR, Adornato BT, Chaudhry V, Flexner C, Wachsman M, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol. 1994;36:244–6.Google Scholar
  53. 53.
    Deising S, Weinkauf B, Blunk J, Obreja O, Schmelz M, Rukwied R. NGF-evoked sensitization of muscle fascia nociceptors in humans. Pain. 2012;153(8):1673–9.  https://doi.org/10.1016/j.pain.2012.04.033.PubMedCrossRefGoogle Scholar
  54. 54.
    Ashraf S, Mapp PI, Burston J, Bennett AJ, Chapman V, Walsh DA. Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis. Ann Rheum Dis. 2014;73(9):1710–8.  https://doi.org/10.1136/annrheumdis-2013-203416.PubMedCrossRefGoogle Scholar
  55. 55.
    Driscoll C, Chanalaris A, Knights C, Ismail H, Sacitharan PK, Gentry C, et al. Nociceptive sensitizers are regulated in damaged joint tissues, including the articular cartilage, when osteoarthritic mice display pain behaviour. Arthritis Rheumatol. 2015;68:857–67.CrossRefGoogle Scholar
  56. 56.
    KE MN, Burleigh A, Gompels LL, Feldmann M, Allen SJ, Williams RO, et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain. 2010;149(2):386–92.  https://doi.org/10.1016/j.pain.2010.03.002.CrossRefGoogle Scholar
  57. 57.
    Orita S, Ishikawa T, Miyagi M, Ochiai N, Inoue G, Eguchi Y, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011;12:134.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aloe L, Tuveri MA, Carcassi U, Levi-Montalcini R. Nerve growth factor in the synovial fluid of patients with chronic arthritis. Arthritis Rheum. 1992;35(3):351–5.  https://doi.org/10.1002/art.1780350315.PubMedCrossRefGoogle Scholar
  59. 59.
    Stoppiello LA, Mapp PI, Wilson D, Hill R, Scammell BE, Walsh DA. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol. 2014;66(11):3018–27.  https://doi.org/10.1002/art.38778.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21.  https://doi.org/10.1016/j.joca.2012.11.012.PubMedCrossRefGoogle Scholar
  61. 61.
    Kalaitzoglou E, Griffin TM, Humphrey MB. Innate immune responses and osteoarthritis. Curr Rheumatol Rep. 2017;19:45.Google Scholar
  62. 62.
    Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J. Rheumatol. 2015;42(3):363–71.  https://doi.org/10.3899/jrheum.140382.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13:533–48.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94.  https://doi.org/10.1177/1759720X12467868.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Rosenberg JH, Rai V, Dilisio MF, Agrawal DK. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets. Mol Cell Biochem. 2017;50:261–9.Google Scholar
  66. 66.
    Nefla M, Holzinger D, Berenbaum F, Jacques C. The danger from within: alarmins in arthritis. Nat Rev Rheumatol. 2016;12(11):669–83.  https://doi.org/10.1038/nrrheum.2016.162.PubMedCrossRefGoogle Scholar
  67. 67.
    Qi J, Buzas K, Fan H, Cohen JI, Wang K, Mont E, et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol Am Assoc Immunol. 2011;186:6417–26.Google Scholar
  68. 68.
    Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Ther 2017.  https://doi.org/10.1016/j.pharmthera.2017.10.006.
  69. 69.
    Feldman P, Due MR, Ripsch MS, Khanna R, White FA. The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. J Neuroinflammation. 2012;9:180.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Miller RE, Belmadani A, Ishihara S, Tran PB, Ren D, Miller RJ, et al. Damage- associated molecular patterns generated in osteoarthritis directly excite murine nociceptive neurons through toll-like receptor 4. Arthritis Rheumatol. 2015;67(11):2933–4.  https://doi.org/10.1002/art.39291.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, et al. Identification of a functional interaction of HMGB1 with receptor for advanced glycation end-products in a model of neuropathic pain. Brain Behav Immun. 2014;42:169–77.  https://doi.org/10.1016/j.bbi.2014.06.199.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med. 2014;20:569–78.Google Scholar
  73. 73.
    Ke X, Jin G, Yang Y, Cao X, Fang R, Feng X, et al. Synovial fluid HMGB-1 levels are associated with osteoarthritis severity. Clin Lab. 2015;61(7):809–18.PubMedGoogle Scholar
  74. 74.
    Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23:471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Miller RE, Miller RJ, Malfait A-M. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014;70(2):185–93.  https://doi.org/10.1016/j.cyto.2014.06.019.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Richter F, Natura G, Löser S, Schmidt K, Viisanen H, Schaible H-G. Tumor necrosis factor causes persistent sensitization of joint nociceptors to mechanical stimuli in rats. Arthritis Rheum. 2010;62:3806–14.Google Scholar
  77. 77.
    Brenn D, Richter F, Schaible H-G. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis rheum. 2007;56:351–9.Google Scholar
  78. 78.
    Ebbinghaus M, Uhlig B, Richter F, Banchet GS, Gajda M, Bräuer R, et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 2012;64:3897–907.Google Scholar
  79. 79.
    Richter F, Natura G, Ebbinghaus M, Banchet von GS, Hensellek S, König C, et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum. 2012;64:4125–34.Google Scholar
  80. 80.
    Miller RE, Block JA, Malfait A-M. What is new in symptom modification in osteoarthritis? Rheumatology 2017;in press.Google Scholar
  81. 81.
    Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, et al. CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci USA. 2012;109(50):20602–7.  https://doi.org/10.1073/pnas.1209294110.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Miotla Zarebska J, Chanalaris A, Driscoll C, Burleigh A, Miller RE, Malfait AM, et al. CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthr Cartil. 2016;25:406–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Longobardi L, Temple JD, Tagliafierro L, Willcockson H, Esposito A, D'Onofrio N, et al. Role of the C-C chemokine Receptor-2 in a murine model of injury-induced osteoarthritis. Osteoarthr Cartil. 2016;25:914–25.PubMedCrossRefGoogle Scholar
  84. 84.
    Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis. 2017;76(5):914–22.  https://doi.org/10.1136/annrheumdis-2016-210426.PubMedCrossRefGoogle Scholar
  85. 85.
    Li L, Jiang B-E. Serum and synovial fluid chemokine ligand 2/monocyte chemoattractant protein 1 concentrations correlates with symptomatic severity in patients with knee osteoarthritis. Ann Clin Biochem. 2015;52:276–82.Google Scholar
  86. 86.
    Scanzello CR, McKeon B, Swaim BH, DiCarlo E, Asomugha EU, Kanda V, et al. Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 2011;63(2):391–400.  https://doi.org/10.1002/art.30137.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nair A, Gan J, Bush-Joseph C, Verma N, Tetreault MW, Saha K, et al. Synovial chemokine expression and relationship with knee symptoms in patients with meniscal tears. Osteoarthr Cartil. 2015;23(7):1158–64.  https://doi.org/10.1016/j.joca.2015.02.016.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sambamurthy N, Nguyen V, Smalley R, Xiao R, Hankenson K, Gan J, et al. Chemokine receptor-7 (CCR7) deficiency leads to delayed development of joint damage and functional deficits in a murine model of osteoarthritis. J. Orthop. Res. 2017  https://doi.org/10.1002/jor.23671.
  89. 89.
    Montague K, Malcangio M. The therapeutic potential of targeting chemokine signalling in the treatment of chronic pain. J Neurochem. 2017;141(4):520–31.  https://doi.org/10.1111/jnc.13927.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Tran PB, Miller RE, Ishihara S, Miller RJ, Malfait A-M. Spinal microglial activation in a murine surgical model of knee osteoarthritis. Osteoarthr Cartil. 2016;25:718–26.PubMedCrossRefGoogle Scholar
  91. 91.
    de Lange-Brokaar BJE, Ioan-Facsinay A, van Osch GJVM, Zuurmond A-M, Schoones J, Toes REM, et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil. 2012;20(12):1484–99.  https://doi.org/10.1016/j.joca.2012.08.027.PubMedCrossRefGoogle Scholar
  92. 92.
    Klein-Wieringa IR, de Lange-Brokaar BJE, Yusuf E, Andersen SN, Kwekkeboom JC, Kroon HM, et al. Inflammatory cells in patients with endstage knee osteoarthritis: a comparison between the synovium and the infrapatellar fat pad. J Rheumatol. 2016;43(4):771–8.  https://doi.org/10.3899/jrheum.151068.PubMedCrossRefGoogle Scholar
  93. 93.
    Li Y-S, Luo W, Zhu S-A, Lei G-H. T Cells in Osteoarthritis: alterations and beyond. Front Immunol. 2017;8:356.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Eymard F, Chevalier X. Inflammation of the infrapatellar fat pad. Joint Bone Spine. 2016;83(4):389–93.  https://doi.org/10.1016/j.jbspin.2016.02.016.PubMedCrossRefGoogle Scholar
  95. 95.
    Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51(2):249–57.  https://doi.org/10.1016/j.bone.2012.02.012.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    • Kraus VB, McDaniel G, Huebner JL, Stabler TV, Pieper CF, Shipes SW, et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr Cartil. 2016;24:1613–21. This is the first paper to describe activated macrophages in vivo in human OA patients. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol. 2015;67(4):956–65.  https://doi.org/10.1002/art.39006.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ren K, Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010;16:1267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Massier J, Eitner A, Segond von Banchet G, Schaible H-G. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 2015;67(8):2263–72.  https://doi.org/10.1002/art.39134.PubMedCrossRefGoogle Scholar
  100. 100.
    Segond von Banchet G, Boettger MK, Fischer N, Gajda M, Bräuer R, Schaible H-G. Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain. 2009;145(1):151–9.  https://doi.org/10.1016/j.pain.2009.06.002.PubMedCrossRefGoogle Scholar
  101. 101.
    Kritas SK, Caraffa A, Antinolfi P, Saggini A, Pantalone A, Rosati M, et al. Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol. 2014;27:15–9.Google Scholar
  102. 102.
    •• Sousa-Valente J, Calvo L, Vacca V, Simeoli R, Arévalo JC, Malcangio M. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthr Cartil 2017;in press, doi:  https://doi.org/10.1016/j.joca.2017.08.006. This study provides evidence for mast cell contribution to experimental OA pain and a link with nerve growth factor signaling.
  103. 103.
    de Lange-Brokaar BJE, Kloppenburg M, Andersen SN, Dorjée AL, Yusuf E, Herb-van Toorn L, et al. Characterization of synovial mast cells in knee osteoarthritis: association with clinical parameters. Osteoarthr Cartil. 2016;24(4):664–71.  https://doi.org/10.1016/j.joca.2015.11.011.PubMedCrossRefGoogle Scholar
  104. 104.
    Muley MM, Reid AR, Botz B, Bölcskei K, Helyes Z, McDougall JJ. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2. Br J Pharmacol. 2016;173(4):766–77.  https://doi.org/10.1111/bph.13237.PubMedCrossRefGoogle Scholar
  105. 105.
    Muley MM, Krustev E, Reid AR, McDougall JJ. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. J Neuroinflamm. 2017;14:168.CrossRefGoogle Scholar
  106. 106.
    Walsh DA, Mapp PI, Kelly S. Calcitonin gene-related peptide in the joint: contributions to pain and inflammation. Br J Clin Pharmacol. 2015;80(5):965–78.  https://doi.org/10.1111/bcp.12669.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bullock CM, Wookey P, Bennett A, Mobasheri A, Dickerson I, Kelly S. Peripheral calcitonin gene-related peptide receptor activation and mechanical sensitization of the joint in rat models of osteoarthritis pain. Arthritis Rheumatol. 2014;66(8):2188–200.  https://doi.org/10.1002/art.38656.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Takano S, Uchida K, Inoue G, Minatani A, Miyagi M, Aikawa J, et al. Increase and regulation of synovial calcitonin gene-related peptide expression in patients with painful knee osteoarthritis. J Pain Res. 2017;10:1099–104.  https://doi.org/10.2147/JPR.S135939.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hirsch S, Corradini L, Just S, Arndt K, Doods H. The CGRP receptor antagonist BIBN4096BS peripherally alleviates inflammatory pain in rats. Pain. 2013;154(5):700–7.  https://doi.org/10.1016/j.pain.2013.01.002.PubMedCrossRefGoogle Scholar
  110. 110.
    Benschop RJ, Collins EC, Darling RJ, Allan BW, Leung D, Conner EM, et al. Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr Cartil. 2014;22(4):578–85.  https://doi.org/10.1016/j.joca.2014.01.009.PubMedCrossRefGoogle Scholar
  111. 111.
    Jin Y, Smith C, Monteith D, Brown R, Camporeale A, McNearney T, et al. LY2951742, a monoclonal antibody against CGRP, failed to reduce signs and symptoms of knee osteoarthritis. Osteoarthr Cartil. 2016;24:S50.Google Scholar
  112. 112.
    Heppelmann B. Anatomy and histology of joint innervation. J Peripher Nerv Syst. 1997;2:5–16.PubMedGoogle Scholar
  113. 113.
    Samuel EP. The autonomic and somatic innervation of the articular capsule. Anat Rec. 1952;113(1):53–70.  https://doi.org/10.1002/ar.1091130104.PubMedCrossRefGoogle Scholar
  114. 114.
    Skoglund S. Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand Suppl. 1956;36:1–101.PubMedCrossRefGoogle Scholar
  115. 115.
    McDougall JJ. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res Ther. 2006;8:220.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    McDougall JJ, Bray RC, Sharkey KA. Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. Anat Rec. 1997;248(1):29–39.  https://doi.org/10.1002/(SICI)1097-0185(199705)248:1<29::AID-AR4>3.0.CO;2-A.PubMedCrossRefGoogle Scholar
  117. 117.
    Eitner A, Pester J, Nietzsche S, Hofmann GO, Schaible H-G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthr Cartil. 2013;21(9):1383–91.  https://doi.org/10.1016/j.joca.2013.06.018.PubMedCrossRefGoogle Scholar
  118. 118.
    Burgi K, Cavalleri MT, Alves AS, Britto LRG, Antunes VR, Michelini LC. Tyrosine hydroxylase immunoreactivity as indicator of sympathetic activity: simultaneous evaluation in different tissues of hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R264–71.  https://doi.org/10.1152/ajpregu.00687.2009.PubMedCrossRefGoogle Scholar
  119. 119.
    Volkers L, Mechioukhi Y, Coste B. Piezo channels: from structure to function. Pflugers Arch Springer Berlin Heidelberg. 2015;467:95–9,  https://doi.org/10.1007/s00424-014-1578-z.
  120. 120.
    Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell. 2011;147(7):1615–27.  https://doi.org/10.1016/j.cell.2011.11.027.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bessou P, Burgess PR, Perl ER, Taylor CB. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J Neurophysiol. 1971;34(1):116–31.  https://doi.org/10.1152/jn.1971.34.1.116.PubMedCrossRefGoogle Scholar
  122. 122.
    Löken LS, Wessberg J, Morrison I, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci. 2009;12(5):547–8.  https://doi.org/10.1038/nn.2312.PubMedCrossRefGoogle Scholar
  123. 123.
    Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nat Publ Group. 2009;462:651–5.Google Scholar
  124. 124.
    Zotterman Y. Touch, pain and tickling: an electro-physiological investigation on cutaneous sensory nerves. J Physiol. 1939;95:1–28.Google Scholar
  125. 125.
    Delfini M-C, Mantilleri A, Gaillard S, Hao J, Reynders A, Malapert P, et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep. 2013;5(2):378–88.  https://doi.org/10.1016/j.celrep.2013.09.013.PubMedCrossRefGoogle Scholar
  126. 126.
    Liljencrantz J, Björnsdotter M, Morrison I, Bergstrand S, Čeko M, Seminowicz DA, et al. Altered C-tactile processing in human dynamic tactile allodynia. Pain. 2013;154(2):227–34.  https://doi.org/10.1016/j.pain.2012.10.024.PubMedCrossRefGoogle Scholar
  127. 127.
    Murakami K, Nakagawa H, Nishimura K, Matsuo S. Changes in peptidergic fiber density in the synovium of mice with collagenase-induced acute arthritis. Can J Physiol Pharmacol. 2015;93:435–41.PubMedCrossRefGoogle Scholar
  128. 128.
    Buma P, Verschuren C, Versleyen D, Van der Kraan P, Oestreicher AB. Calcitonin gene-related peptide, substance P and GAP-43/B-50 immunoreactivity in the normal and arthrotic knee joint of the mouse. Histochemistry. 1992;98(5):327–39.  https://doi.org/10.1007/BF00270017.PubMedCrossRefGoogle Scholar
  129. 129.
    Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther. 2012;14:R101.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Coughlin KA, Kaczmarska MJ, Castaneda-Corral G, et al. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis Rheum. 2012;64:2223–32.Google Scholar
  131. 131.
    Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann Rheum Dis. 2007;66(11):1423–8.  https://doi.org/10.1136/ard.2006.063354.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mapp PI, Sagar DR, Ashraf S, Burston JJ, Suri S, Chapman V, et al. Differences in structural and pain phenotypes in the sodium monoiodoacetate and meniscal transection models of osteoarthritis. Osteoarthr Cartil. 2013;21(9):1336–45.  https://doi.org/10.1016/j.joca.2013.06.031.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh DA. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann Rheum Dis. 2011;70(3):523–9.  https://doi.org/10.1136/ard.2010.137844.PubMedCrossRefGoogle Scholar
  134. 134.
    Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8(7):390–8.  https://doi.org/10.1038/nrrheum.2012.80.PubMedCrossRefGoogle Scholar
  135. 135.
    French HP, Smart KM, Doyle F. Prevalence of neuropathic pain in knee or hip osteoarthritis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2017;47(1):1–8.  https://doi.org/10.1016/j.semarthrit.2017.02.008.PubMedCrossRefGoogle Scholar
  136. 136.
    Adães S, Ferreira-Gomes J, Mendonça M, Almeida L, Castro-Lopes JM, Neto FL. Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthr Cartil. 2015;23(6):914–24.  https://doi.org/10.1016/j.joca.2015.02.010.PubMedCrossRefGoogle Scholar
  137. 137.
    Ferreira-Gomes J, Adães S, Sousa RM, Mendonça M, Castro-Lopes JM. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol Pain. 2012;8:50.Google Scholar
  138. 138.
    Miyamoto S, Nakamura J, Ohtori S, Orita S, Nakajima T, Omae T, et al. Pain-related behavior and the characteristics of dorsal-root ganglia in a rat model of hip osteoarthritis induced by mono-iodoacetate. J Orthop Res. 2017;35(7):1424–30.  https://doi.org/10.1002/jor.23395.PubMedCrossRefGoogle Scholar
  139. 139.
    • McDougall JJ, Albacete S, Schuelert N, Mitchell PG, Lin C, Oskins JL, et al. Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthr Cartil. 2017;25:926–34. This study explores the contribution of LPA to neuropathy and pain in experimental OA PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Delfien Syx
    • 1
    • 2
  • Phuong B. Tran
    • 2
  • Rachel E. Miller
    • 2
  • Anne-Marie Malfait
    • 2
  1. 1.Center for Medical GeneticsGhent UniversityGhentBelgium
  2. 2.Department of Internal Medicine, Division of RheumatologyRush University Medical CenterChicagoUSA

Personalised recommendations