Advertisement

Updates in Lupus Genetics

  • Yun Deng
  • Betty P. Tsao
Systemic Lupus Erythematosus (George Tsokos, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Systemic Lupus Erythematosus

Abstract

Purpose of Review

Our understanding on genetic basis of SLE has been advanced through genome-wide association studies. We review recent progress in lupus genetics with a focus on SLE-associated loci that have been functionally characterized, and discuss the potential for clinical translation of genetics data.

Recent Findings

Over 100 loci have been confirmed to show robust association with SLE and many share with other immune-mediated diseases. Although causative variants captured at these established loci are limited, they guide biological studies of gene targets for functional characterization which highlight the importance of aberrant recognition of self-nucleic acid, type I interferon overproduction, and defective immune cell signaling underlying the pathogenesis of SLE. Increasing examples illustrate a predictive value of genetic findings in susceptibility/prognosis prediction, clinical classification, and pharmacological implication.

Summary

Genetic findings provide a foundation for better understanding of disease pathogenic mechanisms and opportunities for target selection in lupus drug development.

Keywords

Genetics Causative variant Molecular pathways Systemic lupus erythematous 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Tsokos GC, Lo MS, Reis PC, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30.  https://doi.org/10.1038/nrrheum.2016.186.CrossRefPubMedGoogle Scholar
  2. 2.
    Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9.  https://doi.org/10.1056/NEJMoa0707865.CrossRefPubMedGoogle Scholar
  3. 3.
    Kozyrev SV, Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MV, Sanchez E, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(2):211–6.  https://doi.org/10.1038/ng.79.CrossRefPubMedGoogle Scholar
  4. 4.
    Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(9):1059–61.  https://doi.org/10.1038/ng.200.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40(2):204–10.  https://doi.org/10.1038/ng.81.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–33.  https://doi.org/10.1038/ng.468.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet. 2015;47(12):1457–64.  https://doi.org/10.1038/ng.3434.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet. 2016;48(8):940–6.  https://doi.org/10.1038/ng.3603.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Langefeld CD, Ainsworth HC, Cunninghame Graham DS, Kelly JA, Comeau ME, Marion MC, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun. 2017;8:16021.  https://doi.org/10.1038/ncomms16021.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234–7.  https://doi.org/10.1038/ng.472.CrossRefPubMedGoogle Scholar
  11. 11.
    Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 2010;6(2):e1000841.  https://doi.org/10.1371/journal.pgen.1000841.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Okada Y, Shimane K, Kochi Y, Tahira T, Suzuki A, Higasa K, et al. A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet. 2012;8(1):e1002455.  https://doi.org/10.1371/journal.pgen.1002455.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am J Hum Genet. 2013;92(1):41–51.  https://doi.org/10.1016/j.ajhg.2012.11.018.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lessard CJ, Sajuthi S, Zhao J, Kim K, Ice JA, Li H, et al. Identification of a systemic lupus erythematosus risk locus spanning ATG16L2, FCHSD2, and P2RY2 in Koreans. Arthritis Rheumatol. 2016;68(5):1197–209.  https://doi.org/10.1002/art.39548.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet. 2016;48(3):323–30.  https://doi.org/10.1038/ng.3496.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Molineros JE, Yang W, Zhou XJ, Sun C, Okada Y, Zhang H, et al. Confirmation of five novel susceptibility loci for systemic lupus erythematosus (SLE) and integrated network analysis of 82 SLE susceptibility loci. Hum Mol Genet. 2017;26(6):1205–16.  https://doi.org/10.1093/hmg/ddx026.PubMedGoogle Scholar
  17. 17.
    Sanchez E, Comeau ME, Freedman BI, Kelly JA, Kaufman KM, Langefeld CD, et al. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum. 2011;63(11):3493–501.  https://doi.org/10.1002/art.30563.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alarcon-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, Sanchez-Rodriguez E, et al. Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol. 2016;68(4):932–43.  https://doi.org/10.1002/art.39504.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jacob CO, Eisenstein M, Dinauer MC, Ming W, Liu Q, John S, et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A. 2012;109(2):E59–67.  https://doi.org/10.1073/pnas.1113251108.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim-Howard X, Sun C, Molineros JE, Maiti AK, Chandru H, Adler A, et al. Allelic heterogeneity in NCF2 associated with systemic lupus erythematosus (SLE) susceptibility across four ethnic populations. Hum Mol Genet. 2014;23(6):1656–68.  https://doi.org/10.1093/hmg/ddt532.CrossRefPubMedGoogle Scholar
  21. 21.
    •• Zhao J, Ma J, Deng Y, Kelly JA, Kim K, Bang SY, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49(3):433–7.  https://doi.org/10.1038/ng.3782. Identification of NCF1 as the likely causal gene driving a strong SLE-associated signal detected by GWAS within the GTF2IRD1-GTF2I-NCF1 region at chromosome 7q11.23 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhu XW, Wang Y, Wei YH, Zhao PP, Wang XB, Rong JJ, et al. Comprehensive assessment of the association between FCGRs polymorphisms and the risk of systemic lupus erythematosus: evidence from a meta-analysis. Sci Rep. 2016;6:31617.  https://doi.org/10.1038/srep31617.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee YH, Bae SC. Association between the functional ITGAM rs1143679 G/A polymorphism and systemic lupus erythematosus/lupus nephritis or rheumatoid arthritis: an update meta-analysis. Rheumatol Int. 2015;35(5):815–23.  https://doi.org/10.1007/s00296-014-3156-2.CrossRefPubMedGoogle Scholar
  24. 24.
    Molineros JE, Maiti AK, Sun C, Looger LL, Han S, Kim-Howard X, et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 2013;9(2):e1003222.  https://doi.org/10.1371/journal.pgen.1003222.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 2011;7(6):e1002128.  https://doi.org/10.1371/journal.pgen.1002128.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM, et al. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet. 2015;24(2):582–96.  https://doi.org/10.1093/hmg/ddu455.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science. 2014;343(6175):1246980.  https://doi.org/10.1126/science.1246980.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2010;107:15838–43.  https://doi.org/10.1073/pnas.1001337107.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deng Y, Zhao J, Sakurai D, Kaufman KM, Edberg JC, Kimberly RP, et al. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet. 2013;9(2):e1003336.  https://doi.org/10.1371/journal.pgen.1003336.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaufman KM, Zhao J, Kelly JA, Hughes T, Adler A, Sanchez E, et al. Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Ann Rheum Dis. 2013;72(3):437–44.  https://doi.org/10.1136/annrheumdis-2012-201851.CrossRefPubMedGoogle Scholar
  31. 31.
    Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253–8.  https://doi.org/10.1038/ng.766.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang S, Wen F, Wiley GB, Kinter MT, Gaffney PM. An enhancer element harboring variants associated with systemic lupus erythematosus engages the TNFAIP3 promoter to influence A20 expression. PLoS Genet. 2013;9(9):e1003750.  https://doi.org/10.1371/journal.pgen.1003750.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moaaz M, Mohannad N. Association of the polymorphisms of TRAF1 (rs10818488) and TNFAIP3 (rs2230926) with rheumatoid arthritis and systemic lupus erythematosus and their relationship to disease activity among Egyptian patients. Cent Eur J Immunol. 2016;41(2):165–75.  https://doi.org/10.5114/ceji.2016.60991.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Agik S, Franek BS, Kumar AA, Kumabe M, Utset TO, Mikolaitis RA, et al. The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes. J Rheumatol. 2012;39(1):73–8.  https://doi.org/10.3899/jrheum.110590.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang S, Adrianto I, Wiley GB, Lessard CJ, Kelly JA, Adler AJ, et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun. 2012;13(5):380–7.  https://doi.org/10.1038/gene.2012.6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, et al. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One. 2013;8(8):e69404.  https://doi.org/10.1371/journal.pone.0069404.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tang L, Wang Y, Zheng S, Bao M, Zhang Q, Li J. PTPN22 polymorphisms, but not R620W, were associated with the genetic susceptibility of systemic lupus erythematosus and rheumatoid arthritis in a Chinese Han population. Hum Immunol. 2016;77(8):692–8.  https://doi.org/10.1016/j.humimm.2016.04.021.CrossRefPubMedGoogle Scholar
  38. 38.
    Elghzaly AA, Metwally SS, El-Chennawi FA, Elgayaar MA, Mosaad YM, El-Toraby EE, et al. IRF5, PTPN22, CD28, IL2RA, KIF5A, BLK and TNFAIP3 genes polymorphisms and lupus susceptibility in a cohort from the Egypt Delta; relation to other ethnic groups. Hum Immunol. 2015;76(7):525–31.  https://doi.org/10.1016/j.humimm.2015.06.001.CrossRefPubMedGoogle Scholar
  39. 39.
    Sakurai D, Zhao J, Deng Y, Kelly JA, Brown EE, Harley JB, et al. Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression. PLoS Genet. 2013;9(10):e1003870.  https://doi.org/10.1371/journal.pgen.1003870.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vaughn SE, Foley C, Lu X, Patel ZH, Zoller EE, Magnusen AF, et al. Lupus risk variants in the PXK locus alter B-cell receptor internalization. Front Genet. 2015;5:450.  https://doi.org/10.3389/fgene.2014.00450.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guthridge JM, Lu R, Sun H, Sun C, Wiley GB, Dominguez N, et al. Two functional lupus-associated BLK promoter variants control cell-type- and developmental-stage-specific transcription. Am J Hum Genet. 2014;94(4):586–98.  https://doi.org/10.1016/j.ajhg.2014.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lu X, Zoller EE, Weirauch MT, Wu Z, Namjou B, Williams AH, et al. Lupus risk variant increases pSTAT1 binding and decreases ETS1 expression. Am J Hum Genet. 2015;96(5):731–9.  https://doi.org/10.1016/j.ajhg.2015.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    •• Steri M, Orru V, Idda ML, Pitzalis M, Pala M, Zara I, et al. Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med. 2017;376(17):1615–26.  https://doi.org/10.1056/NEJMoa1610528. Identification of a TNFSF13B variant associated with multiple sclerosis and SLE, and its effect at the population, cellular, and molecular levels CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Manjarrez-Orduno N, Marasco E, Chung SA, Katz MS, Kiridly JF, Simpfendorfer KR, et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat Genet. 2012;44(11):1227–30.  https://doi.org/10.1038/ng.2439.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lapaquette P, Guzzo J, Bretillon L, Bringer MA. Cellular and molecular connections between autophagy and inflammation. Mediat Inflamm. 2015;2015:398483.  https://doi.org/10.1155/2015/398483.CrossRefGoogle Scholar
  46. 46.
    Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann Rheum Dis. 2015;74(5):912–20.  https://doi.org/10.1136/annrheumdis-2013-204343.CrossRefPubMedGoogle Scholar
  47. 47.
    Gros F, Arnold J, Page N, Decossas M, Korganow AS, Martin T, et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy. 2012;8(7):1113–23.  https://doi.org/10.4161/auto.20275.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Demirci FY, Wang X, Kelly JA, Morris DL, Barmada MM, Feingold E, et al. Identification of a new susceptibility locus for systemic lupus erythematosus on chromosome 12 in individuals of European ancestry. Arthritis Rheumatol. 2016;68(1):174–83.  https://doi.org/10.1002/art.39403.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Olsson LM, Johansson AC, Gullstrand B, Jonsen A, Saevarsdottir S, Ronnblom L, et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76(9):1607–13.  https://doi.org/10.1136/annrheumdis-2017-211287.CrossRefPubMedGoogle Scholar
  50. 50.
    • Martinez J, Cunha LD, Park S, Yang M, Lu Q, Orchard R, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533(7601):115–9.  https://doi.org/10.1038/nature17950. This study provides evidence for LC3-associated phagocytosis in the clearance of dying cells and inflammation in the control of SLE CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Alessandri C, Barbati C, Vacirca D, Piscopo P, Confaloni A, Sanchez M, et al. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 2012;26(11):4722–32.  https://doi.org/10.1096/fj.12-206060.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Deng Y, Tsao BP. Genetics of human SLE. In: Wallace DJ, Hahn BH, editors. Dubois’ lupus erythematosus and related syndromes. Philadephia: Elsevier Inc; 2012. p. 35–45.Google Scholar
  53. 53.
    Kim K, Brown EE, Choi CB, Alarcon-Riquelme ME, Kelly JA, Glenn SB, et al. Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Ann Rheum Dis. 2012;71(11):1809–14.  https://doi.org/10.1136/annrheumdis-2011-201110.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fossati-Jimack L, Ling GS, Cortini A, Szajna M, Malik TH, McDonald JU, et al. Phagocytosis is the main CR3-mediated function affected by the lupus-associated variant of CD11b in human myeloid cells. PLoS One. 2013;8(2):e57082.  https://doi.org/10.1371/journal.pone.0057082.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    • Faridi MH, Khan SQ, Zhao W, Lee HW, Altintas MM, Zhang K, et al. CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest. 2017;127(4):1271–83.  https://doi.org/10.1172/JCI88442. This study provides evidence for CD11b linked to TLR/IFN-I-dependent inflammation CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 2007;27(5):801–10.  https://doi.org/10.1016/j.immuni.2007.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Das A, Heesters BA, Bialas A, O'Flynn J, Rifkin IR, Ochando J, et al. Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses. Immunity. 2017;46(1):106–19.  https://doi.org/10.1016/j.immuni.2016.12.014.CrossRefPubMedGoogle Scholar
  58. 58.
    Jensen MA, Niewold TB. Interferon regulatory factors: critical mediators of human lupus. Transl Res. 2015;165(2):283–95.  https://doi.org/10.1016/j.trsl.2014.10.002.CrossRefPubMedGoogle Scholar
  59. 59.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60(4):1065–75.  https://doi.org/10.1002/art.24436.CrossRefPubMedGoogle Scholar
  60. 60.
    Qu B, Cao J, Zhang F, Cui H, Teng J, Li J, et al. Type I interferon inhibition of microRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(12):3209–18.  https://doi.org/10.1002/art.39398.CrossRefPubMedGoogle Scholar
  61. 61.
    Li Y, Cheng H, Zuo XB, Sheng YJ, Zhou FS, Tang XF, et al. Association analyses identifying two common susceptibility loci shared by psoriasis and systemic lupus erythematosus in the Chinese Han population. J Med Genet. 2013;50(12):812–8.  https://doi.org/10.1136/jmedgenet-2013-101787.CrossRefPubMedGoogle Scholar
  62. 62.
    Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35(1):22–31.  https://doi.org/10.1016/j.it.2013.10.005.CrossRefPubMedGoogle Scholar
  63. 63.
    Vereecke L, Beyaert R, van Loo G. Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans. 2011;39(4):1086–91.  https://doi.org/10.1042/BST0391086.CrossRefPubMedGoogle Scholar
  64. 64.
    Lewis MJ, Vyse S, Shields AM, Boeltz S, Gordon PA, Spector TD, et al. UBE2L3 polymorphism amplifies NF-kappaB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet. 2015;96(2):221–34.  https://doi.org/10.1016/j.ajhg.2014.12.024.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Morris DL, Taylor KE, Fernando MM, Nititham J, Alarcon-Riquelme ME, Barcellos LF, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet. 2012;91(5):778–93.  https://doi.org/10.1016/j.ajhg.2012.08.026.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    • Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, et al. Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. elife. 2016:5.  https://doi.org/10.7554/eLife.12089. Target sequencing identified the SLE-associated HLA-DR and HLA - DQ alleles in strong LD with regulatory haplotypes termed as XL9, which could increase HLA class II genes transcription in a cis-specific fashion
  67. 67.
    Fernando MM, Freudenberg J, Lee A, Morris DL, Boteva L, Rhodes B, et al. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann Rheum Dis. 2012;71(5):777–84.  https://doi.org/10.1136/annrheumdis-2011-200808.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol. 2014;32:83–119.  https://doi.org/10.1146/annurev-immunol-032713-120249.CrossRefPubMedGoogle Scholar
  69. 69.
    Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15(9):875–83.  https://doi.org/10.1038/ni.2958.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM, Mikulski Z, et al. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity. 2013;39(1):111–22.  https://doi.org/10.1016/j.immuni.2013.06.013.CrossRefPubMedGoogle Scholar
  71. 71.
    Bayley R, Kite KA, McGettrick HM, Smith JP, Kitas GD, Buckley CD, et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis. 2014;74(8):1588–95.  https://doi.org/10.1136/annrheumdis-2013-204796.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu YY, Kumar R, Iida R, Bagavant H, Alarcon-Riquelme ME. BANK1 regulates IgG production in a lupus model by controlling TLR7-dependent STAT1 activation. PLoS One. 2016;11(5):e0156302.  https://doi.org/10.1371/journal.pone.0156302.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Dam EM, Habib T, Chen J, Funk A, Glukhova V, Davis-Pickett M, et al. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clin Immunol. 2016;173:171–80.  https://doi.org/10.1016/j.clim.2016.10.018.CrossRefPubMedGoogle Scholar
  74. 74.
    Russell L, John S, Cullen J, Luo W, Shlomchik MJ, Garrett-Sinha LA. Requirement for transcription factor Ets1 in B cell tolerance to self-antigens. J Immunol. 2015;195(8):3574–83.  https://doi.org/10.4049/jimmunol.1500776.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang D, John SA, Clements JL, Percy DH, Barton KP, Garrett-Sinha LA. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int Immunol. 2005;17(9):1179–91.  https://doi.org/10.1093/intimm/dxh295.CrossRefPubMedGoogle Scholar
  76. 76.
    Cai X, Qiao Y, Diao C, Xu X, Chen Y, Du S, et al. Association between polymorphisms of the IKZF3 gene and systemic lupus erythematosus in a Chinese Han population. PLoS One. 2014;9(10):e108661.  https://doi.org/10.1371/journal.pone.0108661.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    • Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43.  https://doi.org/10.1038/ng.2756. This eQTL meta-analysis identifies trans -eQTLs for 233 SNPs that are associated with complex traits, yielding insights into downstream effects of disease-associated variants CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hedrich CM, Rauen T, Apostolidis SA, Grammatikos AP, Rodriguez Rodriguez N, Ioannidis C, et al. Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A. 2014;111(37):13457–62.  https://doi.org/10.1073/pnas.1408023111.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ptacek T, Li X, Kelley JM, Edberg JC. Copy number variants in genetic susceptibility and severity of systemic lupus erythematosus. Cytogenet Genome Res. 2008;123(1–4):142–7.  https://doi.org/10.1159/000184701.PubMedGoogle Scholar
  80. 80.
    Zhao J, Wu H, Khosravi M, Cui H, Qian X, Kelly JA, et al. Association of genetic variants in complement factor h and factor h-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011;7(5):e1002079.  https://doi.org/10.1371/journal.pgen.1002079.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.  https://doi.org/10.1080/08916930701510673.CrossRefPubMedGoogle Scholar
  82. 82.
    Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet. 2001;28(4):313–4.  https://doi.org/10.1038/91070.CrossRefPubMedGoogle Scholar
  83. 83.
    Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167A(2):296–312.  https://doi.org/10.1002/ajmg.a.36887.CrossRefPubMedGoogle Scholar
  84. 84.
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507–18.  https://doi.org/10.1056/NEJMoa1312625.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Lo MS. Monogenic lupus. Curr Rheumatol Rep. 2016;18(12):71.  https://doi.org/10.1007/s11926-016-0621-9.CrossRefPubMedGoogle Scholar
  86. 86.
    Cortes A, Brown MA. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011;13(1):101.  https://doi.org/10.1186/ar3204.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14(8):549–58.  https://doi.org/10.1038/nrg3523.CrossRefPubMedGoogle Scholar
  88. 88.
    Hughes T, Adler A, Merrill JT, Kelly JA, Kaufman KM, Williams A, et al. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Ann Rheum Dis. 2012;71(5):694–9.  https://doi.org/10.1136/annrheumdis-2011-200385.CrossRefPubMedGoogle Scholar
  89. 89.
    Webb R, Kelly JA, Somers EC, Hughes T, Kaufman KM, Sanchez E, et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann Rheum Dis. 2011;70(1):151–6.  https://doi.org/10.1136/ard.2010.141697.CrossRefPubMedGoogle Scholar
  90. 90.
    Ceccarelli F, Perricone C, Borgiani P, Ciccacci C, Rufini S, Cipriano E, et al. Genetic factors in systemic lupus erythematosus: contribution to disease phenotype. J Immunol Res. 2015;2015:745647.  https://doi.org/10.1155/2015/745647.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kim-Howard X, Maiti AK, Anaya JM, Bruner GR, Brown E, Merrill JT, et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis. 2010;69(7):1329–32.  https://doi.org/10.1136/ard.2009.120543.CrossRefPubMedGoogle Scholar
  92. 92.
    Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet. 2011;7(3):e1001323.  https://doi.org/10.1371/journal.pgen.1001323.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ho RC, Ong H, Thiaghu C, Lu Y, Ho CS, Zhang MW. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol. 2016;43(3):541–51.  https://doi.org/10.3899/jrheum.150884.CrossRefPubMedGoogle Scholar
  94. 94.
    Taylor KE, Chung SA, Graham RR, Ortmann WA, Lee AT, Langefeld CD, et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet. 2011;7(2):e1001311.  https://doi.org/10.1371/journal.pgen.1001311.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chung SA, Brown EE, Williams AH, Ramos PS, Berthier CC, Bhangale T, et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol. 2014;25(12):2859–70.  https://doi.org/10.1681/ASN.2013050446.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Freedman BI, Langefeld CD, Andringa KK, Croker JA, Williams AH, Garner NE, et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 2014;66(2):390–6.  https://doi.org/10.1002/art. 38220.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49(2):262–8.  https://doi.org/10.1038/ng.3755.CrossRefPubMedGoogle Scholar
  98. 98.
    • Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.  https://doi.org/10.1038/nature12873. Implement genetic findings for drug development in rheumatoid arthritis CrossRefPubMedGoogle Scholar
  99. 99.
    • Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9(383)  https://doi.org/10.1126/scitranslmed.aag1166. Development of druggable genome to inform the design of new genotyping arrays that will enable association studies of druggable genes for drug target selection in human disease
  100. 100.
    Young KA, Munroe ME, Guthridge JM, Kamen DL, Niewold TB, Gilkeson GS, et al. Combined role of vitamin D status and CYP24A1 in the transition to systemic lupus erythematosus. Ann Rheum Dis. 2017;76(1):153–8.  https://doi.org/10.1136/annrheumdis-2016-209157.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Rheumatology & ImmunologyMedical University of South CarolinaCharlestonUSA

Personalised recommendations