Skip to main content

Advertisement

Log in

Antibodies Against Complement Components: Relevance for the Antiphospholipid Syndrome—Biomarkers of the Disease and Biopharmaceuticals

  • Antiphospholipid Syndrome (S Zuily, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Laboratory criterion for the diagnosis of antiphospholipid syndrome (APS) is the presence of antiphospholipid antibodies (aPL Abs). Complement system has a role in mediating aPL Abs-induced thrombosis in animal models. The importance of antibodies against complement components (potential biomarkers of APS) and the importance of antibodies with beneficial anti-complement effects in APS (as biopharmaceuticals) are reviewed.

Recent Findings

Antibodies against complement components described in APS patients, so far, are anti-C1q and anti-factor H Abs, although anti-factor B Abs and anti-C5a Abs were described in animal models of APS. Clinical studies in APS patients are limited to a small number of case reports.

Summary

Studies that would confirm potential role of Abs against complement components (as potential biomarkers of APS) are lacking. Lack of randomized clinical trials (that would provide complete data for confirmation of beneficial effects of biopharmaceuticals in complement inhibition) in APS is alarming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bertolaccini ML, Ammengual O, Andreolii L, et al. 14th International Congress on Antiphospholipid Antibodies Task Force. Report on antiphospholipid syndrome laboratory diagnostics and trends. Autoimmun Rev. 2014;13:917–30.

    Article  PubMed  Google Scholar 

  2. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  3. van den Hoogen LL, van Roon JAG, Radstake TRDJ, et al. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev. 2016;15:50–60.

    Article  PubMed  Google Scholar 

  4. Rodríguez-Pintó I, Moitinho M, Santacreu I, Shoenfeld Y, Erkan D, Espinosa G, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun Rev. 2016;15:1120–4.

    Article  PubMed  Google Scholar 

  5. Rodriguez-Pinto I, Espinosa G, Cervera R. Catastrophic antiphospholipid syndrome: the current management approach. Best Pract Res Clin Rheum. 2016;30:239–49.

    Article  Google Scholar 

  6. Shapira I, Andrade D, Allen SL, Salmon JE. Induction of sustained remission in recurrent catastrophic antiphospholipid syndrome via inhibition of terminal complement with eculizumab. Arthrithis Rheum. 2012;64(8):2719–23.

    Article  CAS  Google Scholar 

  7. Espinosa G, Berman H, Cervera R. Management of refractory cases of catastrophic antiphospholipid syndrome. Autoimmun Rev. 2011;10:664–8.

    Article  PubMed  Google Scholar 

  8. D’Ippolito S, Meroni PL, Koike T, Veglia M, Scambia G, Di Simone N. Obstetric antiphospholipid syndrome: a recent classification for an old defined disorder. Autoimmun Rev. 2014;13:901–8.

    Article  PubMed  Google Scholar 

  9. Galarza-Maldonado C, Kourilovitch MR, Perez-Fernandez OM, Gaybor M, Cordero C, Cabrera C, et al. Obstetric antiphospholipid syndrome. Autoimmun Rev. 2012;11:288–95.

    Article  CAS  PubMed  Google Scholar 

  10. Meroni PL, Raschi E, Grossi E, Pregnolato F, Traspidi L, Acaia B, et al. Obstetric and vascular APS: same autoantibodies but different diseases? Lupus. 2012;21:708–10.

    Article  CAS  PubMed  Google Scholar 

  11. Cavazzana I, Manuela N, Irene C, Barbara A, Sara S, Orietta BM, et al. Complement activation in anti-phospholipid syndrome: a clue for an inflammatory process? J Autoimmun. 2007;28:160–4.

    Article  PubMed  Google Scholar 

  12. •• Melis JPM, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PWHI. Complement in therapy and disease regulating the complement system with antibody-based therapeutics. Mol Immunol. 2015;67:117–30. Showed the importance of Ab-based drugs that increase or decrease the complement system

    Article  CAS  PubMed  Google Scholar 

  13. Mollnes TE, Kirschfink M. Strategies of therapeutic complement inhibition. Mol Immunol. 2006;43:107–21.

    Article  CAS  PubMed  Google Scholar 

  14. Carton JM, Strohl WR. Protein therapeutics (introduction to biopharmaceuticals). Introduction to drug research and development. Amsterdam: Elsevier; 2013. p. 127–59. doi:10.1016/B978-0-12-397176-0.00004-2.

    Google Scholar 

  15. Abbas AK, Lichtmann AH, Pober JC. Cellular and molecular immunology. Philadelphia: WB Saunders Company; 2015.

    Google Scholar 

  16. Ricklin D, Lambris JD. New milestones ahead in complement-targeted therapy. Semin Immunol. 2016;28:208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40:560–6.

    Article  CAS  PubMed  Google Scholar 

  18. Sevciovic Grumach A, Kirschfink M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol. 2014;61:110–7.

    Article  Google Scholar 

  19. Peerschke EIB, Yin W, Alpert DR, Roubey RAS, Salmon JE, Ghebrehiwet B. Serum complement activation on heterologous platelets is associated with arterial thrombosis in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus. 2009;18:530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47:2170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thurman J, Kraus D, Girardi G, et al. A novel inhibitor of the alternative complement pathway prevents antiphospholipid antibody-induced pregnancy loss in mice. Mol Immunol. 2005;42:87–97.

    Article  CAS  PubMed  Google Scholar 

  22. Carrera-Marın AL, Romay-Penabad Z, Papalardo E, Reyes-Maldonado E, Garcıa-Latorrem E, Vargas G, et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus. 2012;21:1497–505.

    Article  PubMed  Google Scholar 

  23. Holers M, Girardi G, Mo L, et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salmon JE, Girardi G, Holers VM. Activation of complement mediates antiphospholipid antibody-induced pregnancy loss. Lupus. 2003;12:535–8.

    Article  CAS  PubMed  Google Scholar 

  25. •• Salmon JE, Girardi G, Holers VM. Complement activation as a mediator of antiphospholipid antibody induced pregnancy loss and thrombosis. Ann Rheum Dis. 2002;61:46–50. One of the earliest reports that showed that complement activation is a mediator of aPL Abs-induced pregnancy losses and thrombosis

    Article  Google Scholar 

  26. Pierangeli S, Vega-Ostertag M, Liu X, Girardi G. Complement activation: a novel mechanism in the antiphospholipid syndrome. Ann N Y Acad Sci. 2005;1051:413–20.

    Article  CAS  PubMed  Google Scholar 

  27. Pierangeli S, Girardi G, Vega-Ostertag M, et al. Requirement of activation of complement C3 and C5 for antiphospholipid antibody-mediated thrombophilia. Arthritis Rheum. 2005;52:2120–4.

    Article  CAS  PubMed  Google Scholar 

  28. Girardi G, Berman J, Redecha P, et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest. 2003;112:1644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to b2-glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106:2340–6.

    Article  CAS  PubMed  Google Scholar 

  30. Arfors L, Lefvert AK. Enrichment of antibodies against phospholipids in circulating immune complexes (CIC) in the anti-phospholipid syndrome (APLS). Clin Exp Immunol. 1997;108:47–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sammaritano LR, Ng S, Sobel R, et al. Anticardiolipin IgG subclasses. Association of IgG2 with arterial and/or venous thrombosis. Arthritis Rheum. 1997;40:1998–2006.

    Article  CAS  PubMed  Google Scholar 

  32. Amengual O, Atsumi T, Khamashta MA, Bertolaccini ML, Hughes GVR. IgG2 restriction of anti-P-glycoprotein I as the basis for the association between IgG2 anticardiolipin antibodies and thrombosis in the antiphospholipid syndrome: comment on the article by Sammaritano et a1. Arthritis Rheum. 1998;41:1513–20.

    Article  CAS  PubMed  Google Scholar 

  33. Guerin J, Casey E, Feighery C, et al. Anti-Beta 2-glycoprotein I antibody isotype and IgG subclass in antiphospholipid syndrome patients. Autoimmunity. 1999;31:109–16.

    Article  CAS  PubMed  Google Scholar 

  34. Samarkos M, Davies KA, Gordon C, Walport MJ, Loizou S. IgG subclass distribution of antibodies against b2gpI and cardiolipin in patients with systemic lupus erythematosus and primary antiphospholipid syndrome, and their clinical associations. Rheumatology. 2001;40:1026–32.

    Article  CAS  PubMed  Google Scholar 

  35. Païdassi H, Tacnet-Delorme P, Garlatti V, et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol. 2008;180:2329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gropp K, Weber N, Reuter M, et al. Beta (2)-glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator. Blood. 2011;118:2774–83.

    Article  CAS  PubMed  Google Scholar 

  37. Skerka C, Gropp K, Weber N, Reuter M, Micklisch S, Kopka I, Hallstroem T, Skerka C. Beta 2 glycoprotein 1 (beta 2GPI), the major target in anti-phospholipid syndrome (APS), regulates complement activation on the level of C3/C3b. Abstracts/Mol Immunol. 2011;48:1666–733.

    Google Scholar 

  38. Johnson E, Hetland G. Human umbilical vein endothelial cell synthesize functional C3, C5, C6, C8 and C9 in vivo. Scand J Immunol. 1991;33:667–71.

    Article  CAS  PubMed  Google Scholar 

  39. van den Berg RH, Faber-Krol MC, Sim RB, Daha MR. The first subcomponent of complement, C1q, triggers the production of IL-8, IL-6, and monocyte chemoattractant peptide-1 by human umbilical vein endothelial cells. J Immunol. 1998;161:6924–30.

    PubMed  Google Scholar 

  40. Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1030–5.

    Article  CAS  PubMed  Google Scholar 

  41. Bećarević M, Majkić-Singh N. High-sensitivity C-reactive protein: discriminator between patients with primary and secondary antiphospholipid syndrome. Clin Biochem. 2008;41:1449–53.

    Article  PubMed  Google Scholar 

  42. Oku K, Amengual O, Hisada R, et al. Autoantibodies against complement component 1 q subcomponent (C1q) contribute to complement activation and recurrent thrombosis/pregnancy morbidity in antiphospholipid syndrome. Rheumatology (Oxford). 2016;55:1403–11.

    Article  Google Scholar 

  43. Navratil JS, Manzi S, Kao AH, Krishnaswami S, Liu CC, Ruffing MJ, Shaw PS, et al. Platelet C4d is highly specific for systemic lupus erythematosus. Arthritis Rheum. 2006;54:670–4.

    Article  CAS  PubMed  Google Scholar 

  44. Bećarević M, Ignjatović S. Proinflammatory proteins in female and male patients with primary antiphospholipid syndrome: preliminary data. Clin Rheumatol. 2016;35:2477–83.

    Article  PubMed  Google Scholar 

  45. • Barratt-Due A, Fløisand Y, Orrem HL, Kvam AK, Holme PA, Bergseth G, et al. Complement activation is a crucial pathogenic factor in catastrophic antiphospholipid syndrome. Rheumatology. 2016;55:1337–9. Showed that complement inhibition is a “life-saving” medical intervention for patients with CAPS

    Article  PubMed  PubMed Central  Google Scholar 

  46. •• Dragon-Durey MA, Blanc C, Marinozzi MC, van Schaarenburg RA, Trouw LA. Autoantibodies against complement components and functional consequences. Mol Immunol. 2013;56:213–21. Described auto Abs against various complement components and their associations with clinical manifestations of various diseases

    Article  CAS  PubMed  Google Scholar 

  47. Daha NA, Banda NK, Roos A, Beurskens FJ, Bakker JM, Daha MR, Trouw LA. Complement activation by (auto-) antibodies. Mol Immunol. 2011;48:1656–65.

    Article  CAS  PubMed  Google Scholar 

  48. Kallenberg CGM. Anti-C1q autoantibodies. Autoimmun Rev. 2008;7:612–5.

    Article  CAS  PubMed  Google Scholar 

  49. Katsumata Y, Miyake K, Kawaguchi Y, et al. Anti-C1q antibodies are associated with systemic lupus erythematosus global activity but not specifically with nephritis: a controlled study of 126 consecutive patients. Arthritis Rheum. 2011;63:2436–44.

    Article  CAS  PubMed  Google Scholar 

  50. Blanc C, Togarsimalemath SK, Chauvet S, et al. Anti-factor H autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic syndrome: one target, two diseases. J Immunol. 2015;194:5129–38.

    Article  CAS  PubMed  Google Scholar 

  51. Foltyn Zadura A, Memon AA, Stojanovich LJ, et al. Factor H autoantibodies in patients with antiphospholipid syndrome and thrombosis. J Rheumatol. 2015;42:1786–93.

    Article  PubMed  Google Scholar 

  52. Khamashta M, Taraborelli M, Sciascia S, Tincani A. Antiphospholipid syndrome. Best Pract Res Clin Rheumatol. 2016;30:133–48.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou XJ, Chen M, Wang SX, Zhou FD, Zhao MH. A 3-year follow-up of a patient with acute renal failure caused by thrombotic microangiopathy related to antiphospholipid syndrome: case report. Lupus. 2016;0:1–6.

    Google Scholar 

  54. Thachil J. Recurrent venous thromboembolism while on anticoagulant therapy. Blood Rev. 2012;26:175–81.

    Article  PubMed  Google Scholar 

  55. Jordan SC, Choi J, Kahwaji J, Vo A. Complement inhibition for prevention and treatment of antibody-mediated rejection in renal allograft recipients. Transplant Proc. 2016;48:806–8.

    Article  CAS  PubMed  Google Scholar 

  56. Chandran S, Baxter-Lowe L, Olson JL, Tomlanovich SJ, Webber A. Eculizumab for the treatment of de novo thrombotic microangiopathy post simultaneous pancreas-kidney transplantation—a case report. Transplant Proc. 2011;43:2097–101.

    Article  CAS  PubMed  Google Scholar 

  57. Barilla-Labarca ML, Toder K, Furie R. Targeting the complement system in systemic lupus erythematosus and other diseases. Clin Immunol. 2013;148:313–21.

    Article  CAS  PubMed  Google Scholar 

  58. Hallstensen RF, Bergseth G, Foss S, et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology. 2015;220:452–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kocak B, Arpali E, Demiralp E, Yelken B, Karatas C, Gorcin S, et al. Eculizumab for salvage treatment of refractory antibody-mediated rejection in kidney transplant patients: case reports. Transplant Proc. 2013;45:1022–5.

    Article  CAS  PubMed  Google Scholar 

  60. Legendre C, Sberro-Soussan R, Zuber J, Rabant M, Loupy A, Timsit MA, Anglicheau D. Eculizumab in renal transplantation. Transplant Rev. 2013;27:90–2.

    Article  Google Scholar 

  61. Murdaca G, Colombo BM, Puppo F. Emerging biological drugs: a new therapeutic approach for systemic lupus erythematosus. An update upon efficacy and adverse events. Autoimmun Rev. 2011;11:56–60.

    Article  PubMed  Google Scholar 

  62. Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE, Lightstone L, Cook HT, Cairns TD. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology. 2015;54:2288–90.

    Google Scholar 

  63. Stewart ZA, Collins TE, Schlueter AJ, Raife TI, Holanda DG, Nair R, Reed AI, Thomas CP. Case report: eculizumab rescue of severe accelerated antibody-mediated rejection after ABO-incompatible kidney transplant. Transplant Proc. 2012;44:3033–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lonze BE, Singer AL, Montgomery RA. Eculizumab and renal transplantation in a patient with CAPS. N Engl J Med. 2010;362:1744–5.

    Article  CAS  PubMed  Google Scholar 

  65. Gustavsen A, Bergseth G, Volokhina E, van den Heuvel LP, Skattum L, Mollnes TE, Barratt-Due A. Eculizumab treatment in pregnancy complicated with APS—effects on mother and infant. Abstracts/Immunobiology. 2016;221:1131–225.

    Google Scholar 

  66. Wig S, Chan M, Thachil J, Bruce J, Barnes T. A case of relapsing and refractory catastrophic anti-phospholipid syndrome successfully managed with eculizumab, a complement 5 inhibitor. Rheumatology. 2016;55:382–4.

    Article  PubMed  Google Scholar 

  67. Sheridan D, Yu ZX, Zhang Y, Patel R, Lasaro M, Bouchard K, Andrien B, Marozsan A, Wang Y, Tamburini P. Design and preclinical characterization of ALXN 1210: a next generation anti-C5 monoclonal antibody with improved pharmacokinetics and duration of action. Abstracts/Immunobiology. 2016;221:1131–225.

    Google Scholar 

  68. Harder MJ, Kuhn N, Schrezenmeier H, et al. Mechanistic evidence for incomplete terminal pathway inhibition under eculizumab during strong complement activation. Abstracts/Immunobiology. 2016;221:1131–225.

    Google Scholar 

  69. Nishimura J, Yamamoto M, Hayashi S, Ohyashiki K, Ando K, Brodsky AL, et al. Genetic variants in C5 and poor response to eculizumab. New Engl J Med. 2014;370:632–9.

    Article  CAS  PubMed  Google Scholar 

  70. Risitano AM, Marotta S. Therapeutic complement inhibition in complement-mediated hemolytic anemias: past, present and future. Semin Immunol. 2016;28:223–40.

    Article  CAS  PubMed  Google Scholar 

  71. Woodruff TM, Nandakumar KS, Tedesco F. Inhibiting the C5–C5a receptor axis. Mol Immunol. 2011;48:1631–42.

    Article  CAS  PubMed  Google Scholar 

  72. Manthey HD, Woodruff TM, Taylor SM, Monk PM. Complement 801 component 5a (C5a). Intern J Biochem Cell Biol 2009;41:2114-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Bećarević.

Ethics declarations

Conflict of Interest

The author has no potential financial conflict of interest related to this manuscript.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the author have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Antiphospholipid Syndrome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bećarević, M. Antibodies Against Complement Components: Relevance for the Antiphospholipid Syndrome—Biomarkers of the Disease and Biopharmaceuticals. Curr Rheumatol Rep 19, 40 (2017). https://doi.org/10.1007/s11926-017-0669-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-017-0669-1

Keywords

Navigation