Advertisement

The Epigenomic Landscape in Osteoarthritis

  • Tommie C. Simon
  • Matlock A. JeffriesEmail author
Osteoarthritis (M Goldring, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Osteoarthritis

Abstract

Purpose of Review

Epigenomics has emerged as a key player in our rapidly evolving understanding of osteoarthritis. Historical studies implicated epigenetic alterations, particularly DNA methylation, in OA pathogenesis; however, recent technological advances have resulted in numerous epigenome-wide studies examining in detail epigenetic modifications in OA. The purpose of this article is to introduce basic concepts in epigenetics and their recent applications to the study of osteoarthritis development and progression.

Recent Findings

Epigenetics describes three major phenomena: DNA modification via methylation, histone sidechain modifications, and short noncoding RNA sequences which work in concert to regulate gene transcription in a heritable fashion. Cartilage has been the most widely studied tissue in OA, and differential methylation of genes involved in inflammation, cell cycle, TGFβ, and HOX genes have been confirmed several times. Bone studies suggest similar findings, and the intriguing possibility of epigenetic changes in subchondral bone during many OA processes. Multiple studies have demonstrated the involvement of certain noncoding RNAs, particularly miR-140, in OA development via modulation of key catabolic factors.

Summary

Although much work has been done, much is still unknown. Future epigenomic studies will no doubt continue to widen our understanding of extraarticular tissues and OA pathogenesis, and studies in animal models may offer glimpses into epigenome alterations in the earliest stages of OA.

Keywords

Osteoarthritis Epigenetics DNA methylation Review 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005;365:965–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10:437–41.PubMedGoogle Scholar
  3. 3.
    Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28:5–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–707.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011;7:23–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Hill PWS, Amouroux R, Hajkova P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics. 2014;104:324–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Wiench M, John S, Baek S, Johnson TA, Sung M-H, Escobar T, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30:3028–39.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fernández MP, Young MF, Sobel ME. Methylation of type II and type I collagen genes in differentiated and dedifferentiated chondrocytes. J Biol Chem. 1985;260:2374–8.PubMedGoogle Scholar
  9. 9.
    Roach HI, Yamada N, Cheung KSC, Tilley S, Clarke NMP, Oreffo ROC, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis & Rheumatology Wiley Online Library. 2005;52:3110–24.CrossRefGoogle Scholar
  10. 10.
    Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66:1616–21.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    •• Reynard LN, Bui C, Canty-Laird EG, Young DA, Loughlin J. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20:3450–60. This is a nice demonstration of methQTLs: locations in the genome where DNA methylation and genetic variation contribute to modulate gene expression. CrossRefPubMedGoogle Scholar
  12. 12.
    de Andrés MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB, et al. Loss of methylation in CpG sites in the NF-κB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum. 2013;65:732–42.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Papathanasiou I, Kostopoulou F, Malizos KN, Tsezou A. DNA methylation regulates sclerostin (SOST) expression in osteoarthritic chondrocytes by bone morphogenetic protein 2 (BMP-2) induced changes in Smads binding affinity to the CpG region of SOST promoter. Arthritis Res. Ther. 2015;17:160.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hashimoto K, Otero M, Imagawa K, de Andrés MC, Coico JM, Roach HI, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem ASBMB. 2013;288:10061–72.CrossRefGoogle Scholar
  15. 15.
    Kim K-I, Park Y-S, Im G-I. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res Wiley Online Library. 2013;28:1050–60.CrossRefGoogle Scholar
  16. 16.
    Imagawa K, de Andrés MC, Hashimoto K, Itoi E, Otero M, Roach HI, et al. Association of reduced type IX collagen gene expression in human osteoarthritic chondrocytes with epigenetic silencing by DNA hypermethylation. Arthritis Rheumatol. 2014;66:3040–51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bui C, Barter MJ, Scott JL, Xu Y, Galler M, Reynard LN, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. The FASEB Journal FASEB. 2012;26:3000–11.CrossRefGoogle Scholar
  18. 18.
    •• Takahashi A, de Andrés MC, Hashimoto K, Itoi E, Oreffo ROC. Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. Osteoarthr Cartil. 2015;23:1946–54. This study hints strongly at the importance of localized epigenetic effects (different epigenetic patterns within different zones of the same tissue). CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hashimoto K, Oreffo ROC, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009;60:3303–13.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Akhtar N, Haqqi TM. Level of il-1-induced epigenetic modifications differ in chondrocytes from different histological zones of human cartilage. Arthritis Rheum. 2012;64:29.Google Scholar
  21. 21.
    •• Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, Cortés-Pereira E, Mosquera A, Fernández-Moreno M, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis. 2014;73:668–77. This is the first epigenome-wide association study in cartilage using a modern Illumina approach. The description of a cluster of patients with inflammation-driven was quite novel at the time; several other analyses have since confirmed this phenomenon. CrossRefPubMedGoogle Scholar
  22. 22.
    •• Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Humphrey MB, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis & Rheumatology. Wiley Online Library. 2014;66:2804–15. This study, published by our group, is one of the first comparing tissues from eroded and intact areas of the same joint. CrossRefGoogle Scholar
  23. 23.
    Rushton MD, Reynard LN, Barter MJ, Refaie R, Rankin KS, Young DA, et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 2014;66:2450–60.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    den Hollander W, Ramos YFM, Bos SD, Bomer N, van der Breggen R, Lakenberg N, et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis. 2014;73:2208–12.CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, et al. Genome-wide DNA methylation profile implicates potential cartilage regeneration at the late stage of knee osteoarthritis. Osteoarthr Cartil. 2016;24:835–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Aref-Eshghi E, Zhang Y, Liu M, Harper PE, Martin G, Furey A, et al. Genome-wide DNA methylation study of hip and knee cartilage reveals embryonic organ and skeletal system morphogenesis as major pathways involved in osteoarthritis. BMC Musculoskelet Disord. 2015;16:287.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alvarez-Garcia O, Fisch KM, Akagi R, Su AI, Lotz MK. Differential DNA methylation and reduced expression of critical transcription factors in human oa cartilage. Osteoarthritis Cartilage Elsevier. 2015;23:A72–3.CrossRefGoogle Scholar
  28. 28.
    •• Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: what have we learnt about the disease? Semin Cell Dev Biol [Internet]. 2016; doi: 10.1016/j.semcdb.2016.04.017. This is a very nice, in-depth review of the interaction of genetics and epigenetics in OA. Google Scholar
  29. 29.
    den Hollander W, Meulenbelt I. DNA methylation in osteoarthritis. Curr Genomics. 2015;16:419–26.CrossRefGoogle Scholar
  30. 30.
    den Hollander W, Ramos YFM, Bomer N, Elzinga S, van der Breggen R, Lakenberg N, et al. Transcriptional associations of osteoarthritis mediated loss of epigenetic control in articular cartilage. Arthritis Rheumatol [Internet]. 2015; doi: 10.1002/art.39162.Google Scholar
  31. 31.
    Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell. 2002;13:3369–87.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012;18:405–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Ling IT, Rochard L, Liao EC. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev Biol. 2017;421:219–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Rushton MD, Reynard LN, Young DA, Shepherd C, Aubourg G, Gee F, et al. Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk. Hum Mol Genet. 2015;24:7432–44.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bomer N, den Hollander W, Ramos YFM, Bos SD, van der Breggen R, Lakenberg N, et al. Underlying molecular mechanisms of DIO2 susceptibility in symptomatic osteoarthritis. Ann Rheum Dis. 2015;74:1571–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Bomer N, Cornelis FMF, Ramos YFM, den Hollander W, Storms L, van der Breggen R, et al. The effect of forced exercise on knee joints in Dio2(−/−) mice: type II iodothyronine deiodinase-deficient mice are less prone to develop OA-like cartilage damage upon excessive mechanical stress. Ann Rheum Dis. 2016;75:571–7.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Jeffries MA, Donica M, Baker L, Stevenson M, Annan AC, Humphrey MB, et al. Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic subchondral bone and similarity to overlying cartilage. Arthritis Rheumatol [Internet]. 2015; doi: 10.1002/art.39555. This study, published by our group, is the first to examine DNA methylation of subchondral bone from matched eroded and intact specimens from OA hips and compare this to the overlying cartilage. Google Scholar
  38. 38.
    Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, et al. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis. Sci Rep. 2016;6:34460.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dieker J, Muller S. Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 2010;39:78–84.CrossRefPubMedGoogle Scholar
  40. 40.
    Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40:741–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23:3539–52.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56:1087–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 2009;27:40–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument APM, et al. Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis & Rheumatism. Wiley Online Library. 2013;65:1822–30.CrossRefGoogle Scholar
  45. 45.
    Nasu Y, Nishida K, Miyazawa S, Komiyama T, Kadota Y, Abe N, et al. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr Cartil. 2008;16:723–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhong H-M, Ding Q-H, Chen W-P, Luo R-B. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation. Int Immunopharmacol. 2013;17:329–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 2010;20:11–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Tsuda M, Takahashi S, Takahashi Y, Asahara H. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 2003;278:27224–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Dvir-Ginzberg M, Gagarina V, Lee E-J, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283:36300–10.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Oppenheimer H, Kumar A, Meir H, Schwartz I, Zini A, Haze A, et al. Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation. J Bone Miner Res. 2014;29:348–60.CrossRefPubMedGoogle Scholar
  51. 51.
    Rodova M, Lu Q, Li Y, Woodbury BG, Crist JD, Gardner BM, et al. Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. J Bone Miner Res. 2011;26:1974–86.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    El Mansouri FE, Nebbaki S-S, Kapoor M, Afif H, Martel-Pelletier J, Pelletier J-P, et al. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res. Ther. 2014;16:R113.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284:17897–901.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yoon J-H, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34:9–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925–33.PubMedGoogle Scholar
  56. 56.
    Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3:e3740.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    •• Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SMV, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-α and MMP13. Osteoarthr Cartil. 2009;17:464–72. This is one of the first large-scale miRNA studies of OA tissue. CrossRefPubMedGoogle Scholar
  58. 58.
    Díaz-Prado S, Cicione C, Muiños-López E, Hermida-Gómez T, Oreiro N, Fernández-López C, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012;13:144.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    •• Li Y-H, Tavallaee G, Tokar T, Nakamura A, Sundararajan K, Weston A, et al. Identification of synovial fluid microRNA signature in knee osteoarthritis: differentiating early- and late-stage knee osteoarthritis. Osteoarthr Cartil. 2016;24:1577–86. This interesting miRNA survey using a relatively easily obtained specimens (synovial fluid) hints at potential future epigenetic OA diagnostic tools. CrossRefPubMedGoogle Scholar
  60. 60.
    Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis & rheumatism Wiley Online Library. 2009;60:2723–30.CrossRefGoogle Scholar
  61. 61.
    Min Z, Zhang R, Yao J, Jiang C, Guo Y, Cong F, et al. MicroRNAs associated with osteoarthritis differently expressed in bone matrix gelatin (BMG) rat model. Int J Clin Exp Med. 2015;8:1009–17.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Araldi E, Schipani E. MicroRNA-140 and the silencing of osteoarthritis. Genes Dev. 2010;24:1075–80.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 2012;8:543–52.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tardif G, Hum D, Pelletier J-P, Duval N, Martel-Pelletier J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2009;10:148.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–85.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Karlsen TA, de Souza GA, Ødegaard B, Engebretsen L, Brinchmann JE. microRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1β-induced osteoarthritis. Mol Ther Nucleic Acids. 2016;5:e373.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem. 2012;287:916–24.CrossRefPubMedGoogle Scholar
  68. 68.
    Ukai T, Sato M, Akutsu H, Umezawa A, Mochida J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res. 2012;30:1915–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee J-W, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem Biophys Res Commun. 2010;392:323–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis & Rheumatism Wiley Online Library. 2010;62:1361–71.CrossRefGoogle Scholar
  71. 71.
    Li X, Gibson G, Kim J-S, Kroin J, Xu S, van Wijnen AJ, et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 2011;480:34–41.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wang H, Zhang H, Sun Q, Wang Y, Yang J, Yang J, et al. Intra-articular delivery of Antago-miR-483-5p inhibits osteoarthritis by modulating Matrilin 3 and tissue inhibitor of metalloproteinase 2. Mol Ther [Internet]. 2017; doi: 10.1016/j.ymthe.2016.12.020.Google Scholar
  73. 73.
    Kawanishi Y, Nakasa T, Shoji T, Hamanishi M, Shimizu R, Kamei N, et al. Intra-articular injection of synthetic microRNA-210 accelerates avascular meniscal healing in rat medial meniscal injured model. Arthritis Res Ther. 2014;16:488.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kung LHW, Zaki S, Ravi V, Rowley L, Smith MM, Bell KM, et al. Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis. Osteoarthr Cartil. 2017;25:426–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Rheumatology, Immunology, and AllergyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Oklahoma Medical Research FoundationArthritis and Clinical Immunology ProgramOklahoma CityUSA

Personalised recommendations