Advertisement

The Microbiome: a Revolution in Treatment for Rheumatic Diseases?

  • James T. RosenbaumEmail author
  • Mark J. Asquith
Spondyloarthritis (MA Khan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Spondyloarthritis

Abstract

Purpose of Review

The microbiome is the term that describes the microbial ecosystem that cohabits an organism such as humans. The microbiome has been implicated in a long list of immune-mediated diseases which include rheumatoid arthritis, ankylosing spondylitis, and even gout. The mechanisms to account for this effect are multiple. The clinical implications from observations on the microbiome and disease are broad.

Recent Findings

A growing number of microbiota constituents such as Prevotella copri, Porphyromonas gingivalis, and Collinsella have been correlated or causally related to rheumatic disease. The microbiome has a marked effect on the immune system. Our understanding of immune pathways modulated by the microbiota such as the induction of T helper 17 (Th17) cells and secretory immunoglobulin A (IgA) responses to segmented filamentous bacteria continues to expand. In addition to the gut microbiome, bacterial communities of other sites such as the mouth, lung, and skin have also been associated with the pathogenesis of rheumatic diseases.

Summary

Strategies to alter the microbiome or to alter the immune activation from the microbiome might play a role in the future therapy for rheumatic diseases.

Keywords

Microbiome Ankylosing spondylitis Rheumatoid arthritis Psoriatic arthritis Mucosal immunity 

Notes

Acknowledgments

JTR is supported by the Stan and Madelle Rosenfeld Family Trust and the William and Mary Bauman Foundation. This work was also supported by a Jane Bruckel Award from the Spondylitis Association of America to MJA and by Research to Prevent Blindness, New York City.

Compliance with Ethical Standards

Conflict of Interest

JTR reports research collaboration for OpenBiome, consultancy for Abbvie, consultancy for Santen, speaking for Mallinckrodt, consultancy for Gilead, speaking for Janssen, consultancy for Genentech, consultancy for Allergan, grants from Alcon Research Institute, consultancy for Portage, consultancy for Topivert, consultancy for Mitotech, and consultancy for Xoma, outside the submitted work. MJA declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and were in compliance with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328:228–31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102:11070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608.CrossRefPubMedGoogle Scholar
  6. 6.
    Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33.CrossRefPubMedGoogle Scholar
  7. 7.
    Ward DV, Scholz M, Zolfo M, Taft DH, Schibler KR, Tett A, et al. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep. 2016;14:2912–24.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2016;4:30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nakamura YK, Metea C, Karstens L, Asquith M, Gruner H, Moscibrocki C, et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest Ophthalmol Vis Sci. 2016;57:3747–58.CrossRefPubMedGoogle Scholar
  10. 10.
    Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3:487–95.CrossRefPubMedGoogle Scholar
  11. 11.
    De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6:207–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, Muller A: Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011;121:3088–93.Google Scholar
  15. 15.
    Van Praet JT, Donovan E, Vanassche I, Drennan MB, Windels F, Dendooven A, et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 2015;34:466–74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.••
    Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905. This work found that multiple microbiomes, namely gut, dental, and salivary, were altered in RA patients relative to healthy controls. Concordance was noted between oral and gut microbiomes. Notably, dysbiosis was at least partially resolved after treatment for RA.Google Scholar
  18. 18.
    Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, Marshall M, Kenna TJ, Triolo G, Brown MA: Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015;67:678.Google Scholar
  19. 19.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Coit P, Mumcu G, Ture-Ozdemir F, Unal AU, Alpar U, Bostanci N, et al. Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behcet’s disease. Clin Immunol. 2016;169:28–35.CrossRefPubMedGoogle Scholar
  21. 21.•
    Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, Van den Bosch F, De Vos M, Raes J, Elewaut D: Dialister as microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2016. This study found a potential biomarker of ankylosing spondylitis severity, microbes of the Dialister genus. A positive correlation was found between intestinal colonization by Dialister spp. and Ankylosing Spondylitis Disease Activity Score (ASDAS).Google Scholar
  22. 22.•
    Volkmann ER, Chang YL, Barroso N, Furst DE, Clements PJ, Gorn AH, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol. 2016;68:1483–92. This study reported an altered fecal microbiome in individuals with systemic sclerosis, adding to the number of rheumatic diseases reported to exhibit an altered microbiome.Google Scholar
  23. 23.
    Mylona EE, Mouktaroudi M, Crisan TO, Makri S, Pistiki A, Georgitsi M, et al. Enhanced interleukin-1beta production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals. Arthritis Res Ther. 2012;14:R158.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lederberg J: ‘Ome Sweet’ Omics: a genealogical treasury of words. The Scientist 2001.Google Scholar
  25. 25.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sender R, Fuchs S, Milo R: Revised estimates for the number or human and bacteria cells in the body. bioRxi. 2015, preprint.Google Scholar
  27. 27.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–76.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leblanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987;106:892–9.CrossRefPubMedGoogle Scholar
  31. 31.••
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10. This study describes use of a novel technique, coined “IgA-SEQ,” to determine which intestinal microbes were preferentially targeted by the IgA response. Interestingly, highly IgA-coated gut microbes from Crohn’s disease patients exacerbated colitis in a murine model of inflammatory bowel disease.Google Scholar
  32. 32.
    Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011;121:3088–93.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107:12204–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118:205–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Rehaume LM, Mondot S, Aguirre De Carcer D, Velasco J, Benham H, Hasnain SZ, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 2014;66:2780–92.CrossRefPubMedGoogle Scholar
  39. 39.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Kohashi O, Kuwata J, Umehara K, Uemura F, Takahashi T, Ozawa A. Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect Immun. 1979;26:791–4.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Sujino T, London M, Hoytema Van Konijnenburg DP, Rendon T, Buch T, Silva HM, et al. Tissue adaptation of regulatory and intraepithelial CD4(+) T cells controls gut inflammation. Science. 2016;352:1581–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim M, Qie Y, Park J, Kim CH: Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20:202.Google Scholar
  43. 43.••
    Teng F, Klinger CN, Felix KM, Bradley CP, Wu E, Tran NL, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44:875–88. Here, it is demonstrated that the arthritogenic microbe segmented filamentous bacterium drives autoimmunity in the murine K/BxN model. Mechanistically, this occurs through promoting the egress of T follicular helper cells from intestinal Peyer’s patches to systemic sites where they act to drive systemic autoantibody responses.Google Scholar
  44. 44.
    Asquith M, Rosenbaum J. The interaction between host genetics and the microbiome in the pathogenesis of spondyloarthropathies. Curr Opin Rheumatol. 2016;28:405–12.CrossRefPubMedGoogle Scholar
  45. 45.
    Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A. 2014;111:6696–701.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McAleer JP, Nguyen NL, Chen K, Kumar P, Ricks DM, Binnie M, et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. J Immunol. 2016;197:97–107.CrossRefPubMedGoogle Scholar
  47. 47.
    Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, et al. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol. 2016.Google Scholar
  48. 48.
    Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8:43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lundberg K, Wegner N, Yucel-Lindberg T, Venables PJ. Periodontitis in RA—the citrullinated enolase connection. Nat Rev Rheumatol. 2010;6:727–30.CrossRefPubMedGoogle Scholar
  50. 50.
    Marchesan JT, Gerow EA, Schaff R, Taut AD, Shin SY, Sugai J, et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res Ther. 2013;15:R186.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    de Vries TJ, Yousovich J, Schoenmaker T, Scheres N, Everts V. Tumor necrosis factor-alpha antagonist infliximab inhibits osteoclast formation of peripheral blood mononuclear cells but does not affect periodontal ligament fibroblast-mediated osteoclast formation. J Periodontal Res. 2016;51:186–95.CrossRefPubMedGoogle Scholar
  52. 52.
    Mikuls TR, Payne JB, Deane KD, Thiele GM. Autoimmunity of the lung and oral mucosa in a multisystem inflammatory disease: the spark that lights the fire in rheumatoid arthritis? J Allergy Clin Immunol. 2016;137:28–34.CrossRefPubMedGoogle Scholar
  53. 53.
    Sanchez DA, Nosanchuk JD, Friedman AJ. The skin microbiome: is there a role in the pathogenesis of atopic dermatitis and psoriasis? J Drugs Dermatol. 2015;14:127–30.PubMedGoogle Scholar
  54. 54.
    Li F, Bulbul R, Schumacher Jr HR, Kieber-Emmons T, Callegari PE, Von Feldt JM, et al. Molecular detection of bacterial DNA in venereal-associated arthritis. Arthritis Rheum. 1996;39:950–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, Kaufman KM, et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc Natl Acad Sci U S A. 2010;107:15838–43.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Giamarellos-Bourboulis EJ, Mouktaroudi M, Bodar E, van der Ven J, Kullberg BJ, Netea MG, et al. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process. Ann Rheum Dis. 2009;68:273–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu-Bryan R, Scott P, Sydlaske A, Rose DM, Terkeltaub R. Innate immunity conferred by toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2005;52:2936–46.CrossRefPubMedGoogle Scholar
  59. 59.
    Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9:e105684.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Asquith M, Stauffer P, Davin S, Mitchell C, Lin MP, Rosenbaum JT: Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol 2016.Google Scholar
  61. 61.
    Gomez A, Luckey D, Yeoman CJ, Marietta EV, Berg Miller ME, Murray JA, et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS One. 2012;7:e36095.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Olivares M, Neef A, Castillejo G, Palma GD, Varea V, Capilla A, et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–17.CrossRefPubMedGoogle Scholar
  63. 63.
    Cunningham MW. Streptococcus and rheumatic fever. Curr Opin Rheumatol. 2012;24:408–16.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shahrizaila N, Yuki N. Guillain-Barre syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. J Biomed Biotechnol. 2011;2011:829129.CrossRefPubMedGoogle Scholar
  65. 65.•
    Horai R, Zarate-Blades CR, Dillenburg-Pilla P, Chen J, Kielczewski JL, Silver PB, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity. 2015;43:343–53. This article reports that the gut microbiota can promote the development of uveitogenic T cell responses, with molecular mimicry between microbiota constituents and ocular antigens a proposed mechanism.Google Scholar
  66. 66.•
    Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, Hirota K, Matsushita M, Furuta Y, Narazaki M, et al.: Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016. This paper indicates that human Prevotella copri can promote the development of autoreactive T cell responses in SKG mice, a model of both arthritis and spondyloarthritis.Google Scholar
  67. 67.
    Gutierrez A, Zapater P, Juanola O, Sempere L, Garcia M, Laveda R, et al. Gut bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn’s disease. Am J Gastroenterol. 2016;111:529–40.CrossRefPubMedGoogle Scholar
  68. 68.
    Merilahti-Palo R, Soderstrom K-O, Lahesmaa-Rantala R, Granfors K, Toivanen A. Bacterial antigens in synovial biopsy specimens in yersinia triggered reactive arthritis. Ann Rheum Dis. 1991;50:87–90.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Nikkari S, Rantakokko K, Ekman P, Mottonen T, Leirisalo-Repo M, Virtala M, et al. Salmonella-triggered reactive arthritis: use of polymerase chain reaction, immunocytochemical staining, and gas chromatography-mass spectrometry in the detection of bacterial components from synovial fluid. Arthritis Rheum. 1999;42:84–9.CrossRefPubMedGoogle Scholar
  70. 70.
    van der Heijden IM, Wilbrink B, Tchetverikov I, Schrijver IA, Schouls LM, Hazenberg MP, et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arth Rheum. 2000;43:593–8.CrossRefGoogle Scholar
  71. 71.
    Moen K, Brun JG, Valen M, Skartveit L, Eribe EK, Olsen I, et al. Synovial inflammation in active rheumatoid arthritis and psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs. Clin Exp Rheumatol. 2006;24:656–63.PubMedGoogle Scholar
  72. 72.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.CrossRefPubMedGoogle Scholar
  73. 73.
    Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–109.e106.CrossRefPubMedGoogle Scholar
  74. 74.
    Uranga JA, Lopez-Miranda V, Lombo F, Abalo R. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol Rep. 2016;68:816–26.CrossRefPubMedGoogle Scholar
  75. 75.
    Carmody RN, Gerber GK, Luevano Jr JM, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.CrossRefPubMedGoogle Scholar
  76. 76.
    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106:14728–33.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hansen CH, Andersen LS, Krych L, Metzdorff SB, Hasselby JP, Skov S, et al. Mode of delivery shapes gut colonization pattern and modulates regulatory immunity in mice. J Immunol. 2014;193:1213–22.CrossRefPubMedGoogle Scholar
  79. 79.•
    Montoya J, Matta NB, Suchon P, Guzian MC, Lambert NC, Mattei JP, et al. Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case-control retrospective study. Ann Rheum Dis. 2016;75:879–82. This intriguing report found that breast-fed individuals (infant feeding mode is a major factor that impacts the intestinal microbiota) had a lower prevalence of AS than bottle-fed controls.Google Scholar
  80. 80.
    Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372:1104–13.CrossRefPubMedGoogle Scholar
  81. 81.
    Joosten LA, Abdollahi-Roodsaz S, Dinarello CA, O’Neill L, Netea MG. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol. 2016;12:344–57.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Casey Eye InstituteOregon Health & Science UniversityPortlandUSA
  2. 2.Division of Arthritis and Rheumatic DiseasesOregon Health & Science UniversityPortlandUSA
  3. 3.Legacy Devers Eye InstitutePortlandUSA

Personalised recommendations