Skip to main content

Advertisement

Log in

Functional Genomics and Its Bench-to-Bedside Translation Pertaining to the Identified Susceptibility Alleles and Loci in Ankylosing Spondylitis

  • Spondyloarthritis (MA Khan, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Ankylosing spondylitis (AS) is a highly heritable disease for which there is a great unmet need for improved therapies. Genetics research has identified several major pathways involved in the disease, from which treatments have either now entered clinical practice or are in development. In particular, therapies targeting the IL-23 pathway were repositioned for use in AS following the discovery of multiple genes in the pathway as determinants of AS risk. Discovery of the association of aminopeptidase genes with AS, and subsequently with psoriasis, inflammatory bowel disease and other conditions, has triggered research into therapies targeting this pathway. The AS-genetic associations point to involvement of gut mucosal immunity in driving disease, and metagenomic studies have provided strong support that AS is a disease driven by interaction between the gut microbiome and host immune system, providing a rationale for the exploration of gut-targeted therapies for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. 2016;12(2):81–91. doi:10.1038/nrrheum.2015.133.

    Article  CAS  PubMed  Google Scholar 

  2. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8. doi:10.1038/ng.3528. Identifies over 50 new loci associated with AS and documents the sharing of genetic architecture between AS and IBD and psoriasis in particular.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7. doi:10.1038/ng.873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. International Genetics of Ankylosing Spondylitis C, Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8. doi:10.1038/ng.2667. More than doubled the total number of known AS loci and, amongst other things, confirmed associations of both ERAP2 and NPEPPS with AS, further strengthening evidence of the involvement of aminopeptidases and the disease.

    Article  Google Scholar 

  5. Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon JJ, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42(2):123–7. doi:10.1038/ng.513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6(12):e1001195. doi:10.1371/journal.pgen.1001195.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun. 2015;6:7146. doi:10.1038/ncomms8146. Demonstrates association of multiple HLA alleles with AS, and epistasis between ERAP1 and HLA-B40 in AS, indicating that HLA-B40 and HLA-B27 probably act in similar ways to cause the condition.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14(9):661–73. doi:10.1038/nrg3502.

    Article  CAS  PubMed  Google Scholar 

  9. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503(7475):272–6. doi:10.1038/nature12599.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wellcome Trust Case Control C, Australo-Anglo-American Spondylitis C, Burton PR, Clayton DG, Cardon LR, Craddock N, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37. doi:10.1038/ng.2007.17.

    Article  Google Scholar 

  11. Chang SC, Momburg F, Bhutani N, Goldberg AL. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc Natl Acad Sci U S A. 2005;102(47):17107–12. doi:10.1073/pnas.0500721102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui X, Rouhani FN, Hawari F, Levine SJ. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J Biol Chem. 2003;278(31):28677–85. doi:10.1074/jbc.M300456200.

    Article  CAS  PubMed  Google Scholar 

  13. Cui X, Rouhani FN, Hawari F, Levine SJ. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol. 2003;171(12):6814–9. doi:10.4049/jimmunol.171.12.6814.

    Article  CAS  PubMed  Google Scholar 

  14. Cui X, Hawari F, Alsaaty S, Lawrence M, Combs CA, Geng W, et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Investig. 2002;110(4):515–26. doi:10.1172/jci0213847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haroon N, Tsui FW, Chiu B, Tsui HW, Inman RD. Serum cytokine receptors in ankylosing spondylitis: relationship to inflammatory markers and endoplasmic reticulum aminopeptidase polymorphisms. J Rheumatol. 2010;37(9):1907–10. doi:10.3899/jrheum.100019.

    Article  CAS  PubMed  Google Scholar 

  16. Kochan G, Krojer T, Harvey D, Fischer R, Chen L, Vollmar M, et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. Proc Natl Acad Sci U S A. 2011;108(19):7745–50. doi:10.1073/pnas.1101262108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goto Y, Hattori A, Ishii Y, Tsujimoto M. Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett. 2006;580(7):1833–8. doi:10.1016/j.febslet.2006.02.041.

    Article  CAS  PubMed  Google Scholar 

  18. Seregin SS, Rastall DP, Evnouchidou I, Aylsworth CF, Quiroga D, Kamal RP, et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity. 2013;46(8):497–508. doi:10.3109/08916934.2013.819855. Evidence that ERAP1 variants influence HLA-B27 peptide presentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanz-Bravo A, Campos J, Mazariegos MS, Lopez de Castro JA. Dominant role of the ERAP1 polymorphism R528K in shaping the HLA-B27 peptidome through differential processing determined by multiple peptide residues. Arthritis Rheumatol. 2015;67(3):692–701. doi:10.1002/art.38980. Evidence that ERAP1 variants influence HLA-B27 peptide presentation.

    Article  CAS  PubMed  Google Scholar 

  20. Duchmann R, Lambert C, May E, Hohler T, Marker-Hermann E. CD4+ and CD8+ clonal T cell expansions indicate a role of antigens in ankylosing spondylitis; a study in HLA-B27+ monozygotic twins. Clin Exp Immunol. 2001;123:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Treviño MA, Teixeiro E, Bragado R. CD8+ T cells oligoclonally expanded in synovial fluid at onset of spondyloarthropathy selectively proliferate in response to self-antigens—characterization of cell specificities in nonclonal populations. J Rheumatol. 2004;31(10):1962–72.

    PubMed  Google Scholar 

  22. Frauendorf E, von Goessel H, May E, Marker-Hermann E. HLA-B27-restricted T cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin Exp Immunol. 2003;134(2):351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mamedov IZ, Britanova OV, Chkalina AV, Staroverov DB, Amosova AL, Mishin AS, et al. Individual characterization of stably expanded T cell clones in ankylosing spondylitis patients. Autoimmunity. 2009;42(6):525–36. doi:10.1080/08916930902960362.

    Article  CAS  PubMed  Google Scholar 

  24. Ruckert C, Fiorillo MT, Loll B, Moretti R, Biesiadka J, Saenger W, et al. Conformational dimorphism of self-peptides and molecular mimicry in a disease-associated HLA-B27 subtype. J Biol Chem. 2006;281(4):2306–16. doi:10.1074/jbc.M508528200.

    Article  PubMed  Google Scholar 

  25. Kaarela K, Jantti JK, Kotaniemi KM. Similarity between chronic reactive arthritis and ankylosing spondylitis. A 32-35-year follow-up study. Clin Exp Rheumatol. 2009;27(2):325–8.

    CAS  PubMed  Google Scholar 

  26. Virtala M, Kirveskari J, Granfors K. HLA-B27 modulates the survival of Salmonella enteritidis in transfected L cells, possibly by impaired nitric oxide production. Infect Immun. 1997;65(10):4236–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Ridley A, Hammitzsch A, Al-Mossawi MH, Bunting H, Georgiadis D, et al. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann Rheum Dis. 2016;75(5):916–23. doi:10.1136/annrheumdis-2014-206996. Links ERAP1 and KIR3DL2 with HLA-B27 in AS pathogenesis.

    Article  PubMed  Google Scholar 

  28. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 2005;52(11):3586–95. doi:10.1002/art.21395.

    Article  CAS  PubMed  Google Scholar 

  29. Wong-Baeza I, Ridley A, Shaw J, Hatano H, Rysnik O, McHugh K, et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J Immunol. 2013;190(7):3216–24. doi:10.4049/jimmunol.1202926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridley A, Hatano H, Wong-Baeza I, Shaw J, Matthews KK, Al-Mossawi H, et al. Activation-induced killer cell immunoglobulin-like receptor 3DL2 binding to HLA–B27 licenses pathogenic T cell differentiation in spondyloarthritis. Arthritis Rheumatol. 2016;68(4):901–14. doi:10.1002/art.39515/abstract. KIR3DL2 interaction with HLA-B27 linked to TH17 lymphocytes in AS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harvey D, Pointon JJ, Evans DM, Karaderi T, Farrar C, Appleton LH, et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum Mol Genet. 2009;18(21):4204–12. doi:10.1093/hmg/ddp371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andres AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):e1001157. doi:10.1371/journal.pgen.1001157.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373(26):2534–48. doi:10.1056/NEJMoa1505066. First anti-IL-17 biologic to show major activity in AS.

    Article  CAS  PubMed  Google Scholar 

  34. Poddubnyy D, Hermann KG, Callhoff J, Listing J, Sieper J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann Rheum Dis. 2014;73(5):817–23. doi:10.1136/annrheumdis-2013-204248. Preliminary data showing anti-IL-12p40 effective in AS.

    Article  CAS  PubMed  Google Scholar 

  35. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60(4):955–65. doi:10.1002/art.24389.

    Article  CAS  PubMed  Google Scholar 

  36. Australo-Anglo-American Spondyloarthritis C, Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42(2):123–7. doi:10.1038/ng.513.

    Article  Google Scholar 

  37. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, Villanova F, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One. 2011;6(2):e17160. doi:10.1371/journal.pone.0017160.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sarin R, Wu X, Abraham C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc Natl Acad Sci U S A. 2011;108(23):9560–5. doi:10.1073/pnas.1017854108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Meglio P, Villanova F, Napolitano L, Tosi I, Terranova Barberio M, Mak RK, et al. The IL23R A/Gln381 allele promotes IL-23 unresponsiveness in human memory T-helper 17 cells and impairs Th17 responses in psoriasis patients. J Invest Dermatol. 2013;133(10):2381–9. doi:10.1038/jid.2013.170. Demonstrated that risk variants of IL23R increase IL-23 responsiveness.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182(10):5904–8. doi:10.4049/jimmunol.0900732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kenna TJ, Brown MA. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat Rev Rheumatol. 2013;9(6):375–9. doi:10.1038/nrrheum.2012.205.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012;7(4):e31000. doi:10.1371/journal.pone.0031000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, Peralta S, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64(6):1869–78. doi:10.1002/art.34355.

    Article  CAS  PubMed  Google Scholar 

  44. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat + CD3 + CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76. doi:10.1038/nm.2817.

    Article  CAS  PubMed  Google Scholar 

  45. Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ, McKenzie BS, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med. 2006;203(11):2473–83. doi:10.1084/jem.20061099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, Ruutu M, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66(7):1755–67. doi:10.1002/art.38638. Demonstration of IL-23 dependence of mouse model of spondyloarthritis.

    Article  CAS  PubMed  Google Scholar 

  47. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9. doi:10.1056/NEJMoa1109997.

    Article  CAS  PubMed  Google Scholar 

  48. Stebbings S, Munro K, Simon M, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology. 2002;41:1395–401.

    Article  CAS  PubMed  Google Scholar 

  49. Stone MA, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD. Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology. 2004;43(2):148–55. doi:10.1093/rheumatology/keg482.

    Article  CAS  PubMed  Google Scholar 

  50. Ebringer RW, Cawdell DR, Cowling P, Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis. 1978;37(2):146–51. doi:10.1136/ard.37.2.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ebringer A. The cross-tolerance hypothesis, HLA-B27 and ankylosing spondylitis. Rheumatology. 1983;XXII suppl 2:53–66. doi:10.1093/rheumatology/XXII.suppl_2.53.

    Article  Google Scholar 

  52. O’Mahony S, Anderson N, Nuki G, Ferguson A. Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn’s disease. Ann Rheum Dis. 1992;51(12):1296–300. doi:10.1136/ard.51.12.1296.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mäki-ikola O, Nissilä M, Lehtinen K, Leirisalo-repo M, Toivanen P, Granfors K. Antibodies to Klebsiella pneumoniae, Eschericha coli and Proteus mirabilisin the sera of patients with axial and peripheral form of ankylosing spondylitis. Rheumatology. 1995;34(5):413–7. doi:10.1093/rheumatology/34.5.413.

    Article  Google Scholar 

  54. Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA–B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. 2011;63(11):3195–8. doi:10.1002/art.30558.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Costello M-E, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015;67(3):686–91. doi:10.1002/art.38967. First demonstration that the gut microbiome of AS patients is distinct from healthy controls.

    Article  Google Scholar 

  56. Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE. 2014;9(8):e105684. doi:10.1371/journal.pone.0105684.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–15. doi:10.1056/NEJMoa1205037.

    Article  PubMed  Google Scholar 

  58. Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):500–8. http://www.nature.com/ajg/journal/v108/n4/suppinfo/ajg201359s1.html.

    Article  PubMed  Google Scholar 

  59. Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis. 2014;58(11):1515–22. doi:10.1093/cid/ciu135.

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Nood E, Speelman P, Nieuwdorp M, Keller J. Fecal microbiota transplantation: facts and controversies. Curr Opin Gastroenterol. 2014;30(1):34–9. doi:10.1097/MOG.0000000000000024.

    Article  PubMed  Google Scholar 

  61. Smith M, Kassam Z, Edelstein C, Burgess J, Alm E. OpenBiome remains open to serve the medical community. Nat Biotech. 2014;32(9):867. doi:10.1038/nbt.3006.

    Article  CAS  Google Scholar 

  62. Edelstein CA, Kassam Z, Daw J, Smith MB, Kelly CR. The regulation of fecal microbiota for transplantation: an international perspective for policy and public health. Clin Res Regul Aff. 2015;32(3):99–107. doi:10.3109/10601333.2015.1046602.

    Article  Google Scholar 

  63. Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. http://www.nature.com/nature/journal/v486/n7402/abs/nature11234.html#supplementary-information.

    Article  Google Scholar 

  64. Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infectious Diseases. 2015;2(1). doi:10.1093/ofid/ofv004.

  65. Petrof E, Gloor G, Vanner S, Weese S, Carter D, Daigneault M, et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome. 2013;1(1):1–12. doi:10.1186/2049-2618-1-3.

    Article  Google Scholar 

  66. Sachs RE, Edelstein CA. Ensuring the safe and effective FDA regulation of fecal microbiota transplantation. J Law Biosciences. 2015. doi:10.1093/jlb/lsv032.

    Google Scholar 

  67. Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 2012;8(10):e1002995. doi:10.1371/journal.ppat.1002995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui B, Li P, Xu L, Zhao Y, Wang H, Peng Z, et al. Step-up fecal microbiota transplantation strategy: a pilot study for steroid-dependent ulcerative colitis. J Transl Med. 2015;13(1):1–12. doi:10.1186/s12967-015-0646-2.

    Article  Google Scholar 

  69. Cui B, Feng Q, Wang H, Wang M, Peng Z, Li P et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility and efficacy trial results. J Gastroenterol Hepatol. 2014:n/a-n/a. doi:10.1111/jgh.12727.

  70. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16(1):191. doi:10.1186/s13059-015-0759-1.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Goodrich Julia K, Waters Jillian L, Poole Angela C, Sutter Jessica L, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. doi:10.1016/j.cell.2014.09.053 . Demonstration that the gut microbiome composition is influenced by the host genome.

  72. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Micro. 2011;9(4):279–90. http://www.nature.com/nrmicro/journal/v9/n4/suppinfo/nrmicro2540_S1.html.

    Article  CAS  Google Scholar 

  73. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci. 2010;107(44):18933–8. doi:10.1073/pnas.1007028107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Brown.

Ethics declarations

Conflicts of Interest

TJK, AH and MEC declare that they have no conflicts of interest. MAB reports grants from Wellcome Trust, grants from NHMRC (Australia), grants from NIAMS (USA), grants from Arthritis Research UK and grants from Arthritis Australia, during the conduct of the study.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and were in compliance with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Spondyloarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenna, T.J., Hanson, A., Costello, ME. et al. Functional Genomics and Its Bench-to-Bedside Translation Pertaining to the Identified Susceptibility Alleles and Loci in Ankylosing Spondylitis. Curr Rheumatol Rep 18, 63 (2016). https://doi.org/10.1007/s11926-016-0612-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0612-x

Keywords

Navigation