Skip to main content

Advertisement

Log in

Histone Deacetylases in Cartilage Homeostasis and Osteoarthritis

  • Osteoarthritis (MB Goldring, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The involvement of the epigenome in complex diseases is becoming increasingly clear and more feasible to study due to new genomic and computational technologies. Moreover, therapies altering the activities of proteins that modify and interpret the epigenome are available to treat cancers and neurological disorders. Many additional uses have been proposed for these drugs based on promising preclinical results, including in arthritis models. Understanding the effects of epigenomic drugs on the skeleton is of interest because of its importance in maintaining overall health and fitness. In this review, we summarize ongoing advancements in how one class of epigenetic modifiers, histone deacetylases (Hdacs), controls normal cartilage development and homeostasis, as well as recent work aimed at understanding the alterations in the expression and activities of these enzymes in osteoarthritis (OA). We also review recent studies utilizing Hdac inhibitors and discuss the potential therapeutic benefits and limitations of these drugs for preventing cartilage destruction in OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recent papers of interest are highlighted as: • Of importance •• Of major importance

  1. Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell. 2014;159(3):558–71. doi:10.1016/j.cell.2014.09.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. doi:10.1016/j.gene.2005.09.010.

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–40. doi:10.1126/science.1175371.

    Article  CAS  PubMed  Google Scholar 

  4. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281(24):16502–11. doi:10.1074/jbc.M512494200.

    Article  CAS  PubMed  Google Scholar 

  5. Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275(27):20436–43. doi:10.1074/jbc.M000202200.

    Article  CAS  PubMed  Google Scholar 

  6. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408(6810):377–81. doi:10.1038/35042612.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 2005;307(5707):269–73. doi:10.1126/science.1105166.

    Article  CAS  PubMed  Google Scholar 

  8. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32–42. doi:10.1038/nrg2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev. 2015;95(4):1359–81. doi:10.1152/physrev.00004.2015.

    Article  CAS  PubMed  Google Scholar 

  10. Chini CC, Escande C, Nin V, Chini EN. HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem. 2010;285(52):40830–7. doi:10.1074/jbc.M110.153270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang WM, Tsai SC, Wen YD, Fejer G, Seto E. Functional domains of histone deacetylase-3. J Biol Chem. 2002;277(11):9447–54. doi:10.1074/jbc.M105993200.

    Article  CAS  PubMed  Google Scholar 

  12. Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev. 2003;13(2):143–53. doi:10.1016/S0959-437X(03)00015-7.

    Article  CAS  PubMed  Google Scholar 

  13. Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenet. 2012;4(1):5. doi:10.1186/1868-7083-4-5.

    Article  CAS  Google Scholar 

  14. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29(3):255–65. doi:10.1038/nbt.1759.

    Article  CAS  PubMed  Google Scholar 

  15. Brunmeir R, Lagger S, Seiser C. Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol. 2009;53(2–3):275–89. doi:10.1387/ijdb.082649rb.

    Article  CAS  PubMed  Google Scholar 

  16. Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol. 2001;308(1):27–38. doi:10.1006/jmbi.2001.4569.

    Article  CAS  PubMed  Google Scholar 

  17. Hayakawa T, Nakayama J. Physiological roles of class I HDAC complex and histone demethylase. J Biomed Biotechnol. 2011;2011:129383. doi:10.1155/2011/129383.

    Article  PubMed  CAS  Google Scholar 

  18. Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 2010;11(2):109–23. doi:10.1038/nrg2736.

    Article  CAS  PubMed  Google Scholar 

  19. Wen YD, Perissi V, Staszewski LM, Yang WM, Krones A, Glass CK, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A. 2000;97(13):7202–7. doi:10.1073/pnas.97.13.7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marks PA. Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions. Biochim Biophys Acta. 2010;1799(10–12):717–25. doi:10.1016/j.bbagrm.2010.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30(1):61–72. doi:10.1016/j.molcel.2008.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A. 2000;97(8):4070–5. doi:10.1073/pnas.080064097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106–11. doi:10.1038/35040593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24(19):8374–85. doi:10.1128/MCB.24.19.8374-8385.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9(1):45–57. doi:10.1016/S1097-2765(01)00429-4.

    Article  CAS  PubMed  Google Scholar 

  26. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet. 2003;19(5):286–93. doi:10.1016/S0168-9525(03)00073-8.

    Article  CAS  PubMed  Google Scholar 

  27. Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell. 2006;126(2):321–34. doi:10.1016/j.cell.2006.05.040.

    Article  CAS  PubMed  Google Scholar 

  28. Bheda P, Wolberger C. Biochemistry: sirtuin on a high-fat diet. Nature. 2013;496(7443):41–2. doi:10.1038/496041a.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496(7443):110–3. doi:10.1038/nature12038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941–54. doi:10.1016/j.cell.2006.06.057.

    Article  CAS  PubMed  Google Scholar 

  31. Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev. 2014;26C:24–32. doi:10.1016/j.gde.2014.05.005.

    Article  CAS  Google Scholar 

  32. Orozco-Solis R, Sassone-Corsi P. Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev. 2014;26C:66–72. doi:10.1016/j.gde.2014.06.003.

    Article  CAS  Google Scholar 

  33. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–6. doi:10.1038/nature01657.

    Article  CAS  PubMed  Google Scholar 

  34. Pillai R, Coverdale LE, Dubey G, Martin CC. Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn. 2004;231(3):647–54. doi:10.1002/dvdy.20168.

    Article  CAS  PubMed  Google Scholar 

  35. Ignatius MS, Unal Eroglu A, Malireddy S, Gallagher G, Nambiar RM, Henion PD. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development. PLoS One. 2013;8(5), e63218. doi:10.1371/journal.pone.0063218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, et al. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One. 2010;5(7), e11492. doi:10.1371/journal.pone.0011492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bradley EW, Carpio LR, Westendorf JJ. Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem. 2013;288(14):9572–82. doi:10.1074/jbc.M112.423723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carpio LR, Bradley EW, Dudakovic A, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone deacetylase 3 controls extracellular matrix remodeling and proinflammatory signals in chondrocytes. Seattle: American Society for Bone and Mineral Research; 2015.

    Google Scholar 

  39. Carpio LR, Bradley EW, McGee-Lawrence ME, Westendorf JJ. Histone deacetylase 3 suppresses Erk phosphorylation and subsequent matrix metalloproteinase (MMP)-13 activity in chondrocytes during endochondral ossification. Houston: American Society for Bone and Mineral Research; 2014.

    Google Scholar 

  40. Haberland M, Mokalled MH, Montgomery RL, Olson EN. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 2009;23(14):1625–30. doi:10.1101/gad.1809209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119(4):555–66. doi:10.1016/j.cell.2004.10.024.

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu E, Nakatani T, He Z, Partridge NC. Parathyroid hormone regulates histone deacetylase (HDAC) 4 through protein kinase A-mediated phosphorylation and dephosphorylation in osteoblastic cells. J Biol Chem. 2014;289(31):21340–50. doi:10.1074/jbc.M114.550699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Shimizu E, Selvamurugan N, Westendorf JJ, Olson EN, Partridge NC. HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression. J Biol Chem. 2010;285(13):9616–26. doi:10.1074/jbc.M109.094862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, et al. Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol. 2002;22(22):7982–92. doi:10.1128/MCB.22.22.7982-7992.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simon D, Laloo B, Barillot M, Barnetche T, Blanchard C, Rooryck C, et al. A mutation in the 3′-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Hum Mol Genet. 2010;19(10):2015–27. doi:10.1093/hmg/ddq083.

    Article  CAS  PubMed  Google Scholar 

  46. Bradley EW, Carpio LR, Olson EN, Westendorf JJ. Histone deacetylase 7 (Hdac7) suppresses chondrocyte proliferation and beta-catenin activity during endochondral ossification. J Biol Chem. 2015;290(1):118–26. doi:10.1074/jbc.M114.596247. This report showed that deletion of Hdac7 in chondrocytes enhances growth plate chondrocyte proliferation.

    Article  CAS  PubMed  Google Scholar 

  47. Gabay O, Zaal KJ, Sanchez C, Dvir-Ginzberg M, Gagarina V, Song Y, et al. Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine. 2013;80(6):613–20. doi:10.1016/j.jbspin.2013.01.001. This study evaluated the cartilage phenotypes in Sirt1-deficient mice and confirmed chondroprotective mechanisms of Sirt1 in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemieux ME, Yang X, Jardine K, He X, Jacobsen KX, Staines WA, et al. The Sirt1 deacetylase modulates the insulin-like growth factor signaling pathway in mammals. Mech Ageing Dev. 2005;126(10):1097–105. doi:10.1016/j.mad.2005.04.006.

    Article  CAS  PubMed  Google Scholar 

  49. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003;23(1):38–54. doi:10.1128/MCB.23.1.38-54.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–29. doi:10.1016/j.cell.2005.11.044.

    Article  CAS  PubMed  Google Scholar 

  51. Piao J, Tsuji K, Ochi H, Iwata M, Koga D, Okawa A, et al. Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling. Sci Rep. 2013;3:3022. doi:10.1038/srep03022.

    Article  PubMed  Google Scholar 

  52. St Sauver JL, Warner DO, Yawn BP, Jacobson DJ, McGree ME, Pankratz JJ, et al. Why patients visit their doctors: assessing the most prevalent conditions in a defined American population. Mayo Clin Proc. 2013;88(1):56–67. doi:10.1016/j.mayocp.2012.08.020.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Murray CJ, Atkinson C, Bhalla K, Birbeck G, Burstein R, Chou D, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608. doi:10.1001/jama.2013.13805.

    Article  CAS  PubMed  Google Scholar 

  54. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223. doi:10.1016/S0140-6736(12)61689-4.

    Article  PubMed  Google Scholar 

  55. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437–41. doi:10.1038/nrrheum.2014.44.

    PubMed  Google Scholar 

  56. Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum. 2006;54(1):226–9. doi:10.1002/art.21562.

    Article  PubMed  Google Scholar 

  57. Houard X, Goldring MB, Berenbaum F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep. 2013;15(11):375. doi:10.1007/s11926-013-0375-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707. doi:10.1002/art.34453.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7. doi:10.1111/j.1749-6632.2009.05240.x.

    Article  CAS  PubMed  Google Scholar 

  60. Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23(10):3539–52. doi:10.1096/fj.09-133215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huh YH, Ryu JH, Chun JS. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem. 2007;282(23):17123–31. doi:10.1074/jbc.M700599200.

    Article  CAS  PubMed  Google Scholar 

  62. Liu CJ, Prazak L, Fajardo M, Yu S, Tyagi N, Di Cesare PE. Leukemia/lymphoma-related factor, a POZ domain-containing transcriptional repressor, interacts with histone deacetylase-1 and inhibits cartilage oligomeric matrix protein gene expression and chondrogenesis. J Biol Chem. 2004;279(45):47081–91. doi:10.1074/jbc.M405288200.

    Article  CAS  PubMed  Google Scholar 

  63. Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 2010;20(1):11–7. doi:10.1007/s10165-009-0224-7.

    Article  CAS  PubMed  Google Scholar 

  64. Abed E, Couchourel D, Delalandre A, Duval N, Pelletier JP, Martel-Pelletier J, et al. Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/beta-catenin activity. Bone. 2014;59:28–36. doi:10.1016/j.bone.2013.10.020.

    Article  CAS  PubMed  Google Scholar 

  65. Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10. doi:10.1074/jbc.M803196200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell. 2014;13(5):787–96. doi:10.1111/acel.12220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100(19):10794–9. doi:10.1073/pnas.1934713100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabay O, Sanchez C, Dvir-Ginzberg M, Gagarina V, Zaal KJ, Song Y, et al. Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum. 2013;65(1):159–66. doi:10.1002/art.37750. This study showed that enzymatically active Sirt1 is necessary for chondroprotection and maintainence of normal cartilage homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu Y, Chen L, Wang Y, Li W, Lin Y, Yu D, et al. Overexpression of Sirtuin 6 suppresses cellular senescence and NF-kappaB mediated inflammatory responses in osteoarthritis development. Sci Rep. 2015;5:17602. doi:10.1038/srep17602. This report demonstrated that the activation of Sirt6 prevents articular cartilage degradation in mouse models of osteoarthritis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao K, Wei L, Zhang Z, Guo L, Zhang C, Li Y, et al. Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration. Arthritis Res Ther. 2014;16(6):491. doi:10.1186/s13075-014-0491-3. This study examined Hdac4 expression in OA and normal articular cartilage and concluded that Hdac4 expression inversely correlated with OA development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lu J, Sun Y, Ge Q, Teng H, Jiang Q. Histone deacetylase 4 alters cartilage homeostasis in human osteoarthritis. BMC Musculoskelet Disord. 2014;15:438. doi:10.1186/1471-2474-15-438. This paper demonstrated that Hdac4 expression levels can vary depending on the severity of OA and location within the different chondrocytic zones of the articular cartilage. Repression of Hdac4 reduced matrix degrading enzymes in OA chondrocytes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Song J, Jin EH, Kim D, Kim KY, Chun CH, Jin EJ. MicroRNA-222 regulates MMP-13 via targeting HDAC-4 during osteoarthritis pathogenesis. BBA Clin. 2015;3:79–89. doi:10.1016/j.bbacli.2014.11.009. In this paper, Hdac4 expression was higher in OA chondrocytes due to suppression of the micro RNA, miR-222.

    Article  PubMed  Google Scholar 

  73. Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med. 2011;17(5–6):333–52. doi:10.2119/molmed.2011.00116.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91. doi:10.1038/nrd4360.

    Article  CAS  PubMed  Google Scholar 

  75. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 2014;10(3):469–78. doi:10.4103/0973-1482.137937.

    CAS  PubMed  Google Scholar 

  76. McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in skeletal development and bone mass maintenance. Gene. 2011;474(1–2):1–11. doi:10.1016/j.gene.2010.12.003.

    Article  CAS  PubMed  Google Scholar 

  77. Slingerland M, Guchelaar HJ, Gelderblom H. Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors. Anticancer Drugs. 2014;25(2):140–9. doi:10.1097/CAD.0000000000000040.

    Article  CAS  PubMed  Google Scholar 

  78. Boluk A, Guzelipek M, Savli H, Temel I, Ozisik HI, Kaygusuz A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50(1):93–7. doi:10.1016/j.phrs.2003.11.011.

    Article  CAS  PubMed  Google Scholar 

  79. Giavini E, Menegola E. Teratogenic activity of HDAC inhibitors. Curr Pharm Des. 2014;20(34):5438–42. doi:10.2174/1381612820666140205144900.

    Article  CAS  PubMed  Google Scholar 

  80. Guo CY, Ronen GM, Atkinson SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001;42(9):1141–7. doi:10.1046/j.1528-1157.2001.416800.x.

    Article  CAS  PubMed  Google Scholar 

  81. Oner N, Kaya M, Karasalihoglu S, Karaca H, Celtik C, Tutunculer F. Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health. 2004;40(8):470–3. doi:10.1111/j.1440-1754.2004.00431.x.

    Article  CAS  PubMed  Google Scholar 

  82. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology. 2001;57(3):445–9. doi:10.1212/WNL.57.3.445.

    Article  CAS  PubMed  Google Scholar 

  83. Senn SM, Kantor S, Poulton IJ, Morris MJ, Sims NA, O’Brien TJ, et al. Adverse effects of valproate on bone: defining a model to investigate the pathophysiology. Epilepsia. 2010;51(6):984–93. doi:10.1111/j.1528-1167.2009.02516.x.

    Article  CAS  PubMed  Google Scholar 

  84. Sheth RD, Wesolowski CA, Jacob JC, Penney S, Hobbs GR, Riggs JE, et al. Effect of carbamazepine and valproate on bone mineral density. J Pediatr. 1995;127(2):256–62. doi:10.1016/S0022-3476(95)70304-7.

    Article  CAS  PubMed  Google Scholar 

  85. McGee-Lawrence ME, McCleary-Wheeler AL, Secreto FJ, Razidlo DF, Zhang M, Stensgard BA, et al. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone. 2011;48(5):1117–26. doi:10.1016/j.bone.2011.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lajeunie E, Barcik U, Thorne JA, El Ghouzzi V, Bourgeois M, Renier D. Craniosynostosis and fetal exposure to sodium valproate. J Neurosurg. 2001;95(5):778–82. doi:10.3171/jns.2001.95.5.0778.

    Article  CAS  PubMed  Google Scholar 

  87. Ornoy A. Neuroteratogens in man: an overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reprod Toxicol. 2006;22(2):214–26. doi:10.1016/j.reprotox.2006.03.014.

    Article  CAS  PubMed  Google Scholar 

  88. Sharony R, Garber A, Viskochil D, Schreck R, Platt LD, Ward R, et al. Preaxial ray reduction defects as part of valproic acid embryofetopathy. Prenat Diagn. 1993;13(10):909–18. doi:10.1002/pd.1970131005.

    Article  CAS  PubMed  Google Scholar 

  89. Vajda FJ, Eadie MJ. Maternal valproate dosage and foetal malformations. Acta Neurol Scand. 2005;112(3):137–43. doi:10.1111/j.1600-0404.2005.00458.x.

    Article  CAS  PubMed  Google Scholar 

  90. Paradis FH, Hales BF. Exposure to valproic acid inhibits chondrogenesis and osteogenesis in mid-organogenesis mouse limbs. Toxicol Sci. 2013;131(1):234–41. doi:10.1093/toxsci/kfs292.

    Article  CAS  PubMed  Google Scholar 

  91. Di Renzo F, Broccia ML, Giavini E, Menegola E. Relationship between embryonic histonic hyperacetylation and axial skeletal defects in mouse exposed to the three HDAC inhibitors apicidin, MS-275, and sodium butyrate. Toxicol Sci. 2007;98(2):582–8. doi:10.1093/toxsci/kfm115.

    Article  PubMed  CAS  Google Scholar 

  92. Di Renzo F, Cappelletti G, Broccia ML, Giavini E, Menegola E. Boric acid inhibits embryonic histone deacetylases: a suggested mechanism to explain boric acid-related teratogenicity. Toxicol Appl Pharmacol. 2007;220(2):178–85. doi:10.1016/j.taap.2007.01.001.

    Article  PubMed  CAS  Google Scholar 

  93. Paradis FH, Hales BF. The effects of class-specific histone deacetylase inhibitors on the development of limbs during organogenesis. Toxicol Sci. 2015;148(1):220–8. doi:10.1093/toxsci/kfv174. The effects of HDAC inhibitors on the different phases of skeletal development and limb growth were studied in mice expressing fluorescent proteins that trace three skeletal lineages.

    Article  CAS  PubMed  Google Scholar 

  94. Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument AP, et al. Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum. 2013;65(7):1822–30. doi:10.1002/art.37965. This is the first study to systemically administer HDAC inhibitors to mice in the DMM model of osteoarthritis. HDAC inhibitors prevented OA development by repressing cytokine-induced expression of Mmp1 and Mmp13 expression in articular chondrocytes.

    Article  CAS  PubMed  Google Scholar 

  95. Chen WP, Bao JP, Hu PF, Feng J, Wu LD. Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep. 2010;37(8):3967–72. doi:10.1007/s11033-010-0055-9.

    Article  CAS  PubMed  Google Scholar 

  96. Chen WP, Bao JP, Tang JL, Hu PF, Wu LD. Trichostatin A inhibits expression of cathepsins in experimental osteoarthritis. Rheumatol Int. 2011;31(10):1325–31. doi:10.1007/s00296-010-1481-7.

    Article  CAS  PubMed  Google Scholar 

  97. Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 2009;27(1):40–9. doi:10.1080/08977190802625179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Young DA, Lakey RL, Pennington CJ, Jones D, Kevorkian L, Edwards DR, et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther. 2005;7(3):R503–12. doi:10.1186/ar1702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74. doi:10.1016/j.joca.2012.09.003. This is one of the initial studies investigating how Hdac inhibitors repress matrix degrading enzymes in human chondrocytes.

    Article  CAS  PubMed  Google Scholar 

  100. Zhong HM, Ding QH, Chen WP, Luo RB. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-kappaB nuclear translocation. Int Immunopharmacol. 2013;17(2):329–35. doi:10.1016/j.intimp.2013.06.027. This in vitro study showed that the Hdac inhibitor, vorinostat, represses matrix degrading enzymes and the overproduction of nitric oxide by inhibiting MAPK signaling and nuclear translocation and transcriptional activity of NF-kappaB in human chondrocytes.

    Article  CAS  PubMed  Google Scholar 

  101. Makki MS, Haqqi TM. HDAC inhibitor SAHA induces MCPIP1 expression and suppresses Il-6 expression in human OA chondrocytes. Osteoarthr Cartil. 2015;23:A156. doi:10.1016/j.joca.2015.02.911. This in vitro study showed that SAHA (vorinostat) induces the expression of a negative regulator of Il-6 in human OA chondrocytes, which suppressed Il-6 and reduced matrix degradation.

    Google Scholar 

  102. Cai D, Yin S, Yang J, Jiang Q, Cao W. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis. Arthritis Res Ther. 2015;17:269. doi:10.1186/s13075-015-0774-3. This report showed that Nrf2 regulates expression of antioxidant enzymes and is necessary for chrondroprotection by HDIs in an OA model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wang JH, Shih KS, Wu YW, Wang AW, Yang CR. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthr Cartil. 2013;21(12):1987–96. doi:10.1016/j.joca.2013.09.008. This paper showed that Hdac inhibitors indirectly modulates cytokine signaling through microRNAs that block cytokine-induced signaling in OA synoviocytes.

    Article  CAS  PubMed  Google Scholar 

  104. Lee S, Park JR, Seo MS, Roh KH, Park SB, Hwang JW, et al. Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Prolif. 2009;42(6):711–20. doi:10.1111/j.1365-2184.2009.00633.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Westendorf.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpio, L.R., Westendorf, J.J. Histone Deacetylases in Cartilage Homeostasis and Osteoarthritis. Curr Rheumatol Rep 18, 52 (2016). https://doi.org/10.1007/s11926-016-0602-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0602-z

Keywords

Navigation