Skip to main content

Advertisement

Log in

Rheumatoid Arthritis Pharmacotherapies: Do They Have Anti-Atherosclerotic Activity?

  • Rheumatoid Arthritis (LW Moreland, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is associated with a heightened risk of cardiovascular disease (CVD) events, presumably related to a greater burden of atherosclerosis, as well as atherosclerotic plaques that tend to be inflamed and rupture prone. Many of the inflammatory pathways underlying the pathobiology of RA are also recognized contributors to atherosclerosis. Immunomodulation is the mainstay for RA therapy, and a variety of biologic and non-biologic pharmacotherapies are used either singly or in combination to control articular and systemic inflammation and prevent joint destruction. Almost all of these agents have theoretical potential to favorably affect atherogenesis and atherothrombosis, but mechanisms by which they exert effects have been incompletely studied, to date. However, whether clinical control of RA disease activity is associated with a reduction in CVD events regardless of agent used or whether the potency of anti-atherogenic effects varies between disease-modifying anti-rheumatic drugs (DMARDs) is an area of current interest in RA research. More broadly, RA immunotherapies are currently being tested in high-CVD-risk patients in proof-of-concept clinical trials that could alter the paradigm for CVD treatment and prevention in the general population. In this review, we will summarize the current evidence ascribing atheroprotective effects to RA pharmacotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Avina-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59(12):1690–7. doi:10.1002/art.24092.

    Article  PubMed  Google Scholar 

  2. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524–9. doi:10.1136/annrheumdis-2011-200726.

    Article  PubMed  Google Scholar 

  3. Chung CP, Oeser A, Raggi P, Gebretsadik T, Shintani AK, Sokka T, et al. Increased coronary-artery atherosclerosis in rheumatoid arthritis: relationship to disease duration and cardiovascular risk factors. Arthritis Rheum. 2005;52(10):3045–53. doi:10.1002/art.21288.

    Article  PubMed  Google Scholar 

  4. Giles JT, Szklo M, Post W, Petri M, Blumenthal RS, Lam G, et al. Coronary arterial calcification in rheumatoid arthritis: comparison to the multi-ethnic study of atherosclerosis. Arthritis Res Ther. 2009;11(2):R36. doi:10.1186/ar2641.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kobayashi H, Giles JT, Polak JF, Blumenthal RS, Leffell MS, Szklo M, et al. Increased prevalence of carotid artery atherosclerosis in rheumatoid arthritis is artery-specific. J Rheumatol. 2010;37(4):730–9. doi:10.3899/jrheum.090670.

    Article  PubMed  Google Scholar 

  6. Karpouzas GA, Malpeso J, Choi TY, Li D, Munoz S, Budoff MJ. Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease. Ann Rheum Dis. 2014;73(10):1797–804. doi:10.1136/annrheumdis-2013-203617.

    Article  PubMed  Google Scholar 

  7. Aubry MC, Maradit-Kremers H, Reinalda MS, Crowson CS, Edwards WD, Gabriel SE. Differences in atherosclerotic coronary heart disease between subjects with and without rheumatoid arthritis. J Rheumatol. 2007;34(5):937–42.

    CAS  PubMed  Google Scholar 

  8. Kinlay S, Selwyn AP, Libby P, Ganz P. Inflammation, the endothelium, and the acute coronary syndromes. J Cardiovasc Pharmacol. 1998;32 Suppl 3:S62–S6.

    CAS  PubMed  Google Scholar 

  9. Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(3):480–9. doi:10.1136/annrheumdis-2014-206624. This is the most up-to-date meta-analysis of observational studies exploring the association of DMARDs, NSAIDs, and corticosteroids on cardiovascular events.

  10. Choi HK, Hernan MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359(9313):1173–7.

    Article  CAS  PubMed  Google Scholar 

  11. Wolfe F, Michaud K. The risk of myocardial infarction and pharmacologic and nonpharmacologic myocardial infarction predictors in rheumatoid arthritis: a cohort and nested case–control analysis. Arthritis Rheum. 2008;58(9):2612–21. doi:10.1002/art.23811.

    Article  PubMed  Google Scholar 

  12. Vandhuick T, Allanore Y, Borderie D, Louvel JP, Fardellone P, Dieude P et al. Early phase clinical and biological markers associated with subclinical atherosclerosis measured at 7 years of evolution in an early inflammatory arthritis cohort. Clin Exp Rheumatol. 2015

  13. Kim HJ, Kim MJ, Lee CK, Hong YH. Effects of methotrexate on carotid intima-media thickness in patients with rheumatoid arthritis. J Korean Med Sci. 2015;30(11):1589–96. doi:10.3346/jkms.2015.30.11.1589.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guin A, Chatterjee Adhikari M, Chakraborty S, Sinhamahapatra P, Ghosh A. Effects of disease modifying anti-rheumatic drugs on subclinical atherosclerosis and endothelial dysfunction which has been detected in early rheumatoid arthritis: 1-year follow-up study. Semin Arthritis Rheum. 2013;43(1):48–54. doi:10.1016/j.semarthrit.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  15. Wallberg-Jonsson S, Ohman M, Rantapaa-Dahlqvist S. Which factors are related to the presence of atherosclerosis in rheumatoid arthritis? Scand J Rheumatol. 2004;33(6):373–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kumeda Y, Inaba M, Goto H, Nagata M, Henmi Y, Furumitsu Y, et al. Increased thickness of the arterial intima-media detected by ultrasonography in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(6):1489–97.

    Article  PubMed  Google Scholar 

  17. Chung CP, Giles JT, Kronmal RA, Post WS, Gelber AC, Petri M, et al. Progression of coronary artery atherosclerosis in rheumatoid arthritis: comparison with participants from the Multi-Ethnic Study of Atherosclerosis. Arthritis Res Ther. 2013;15(5):R134. doi:10.1186/ar4314.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giles JT, Post WS, Blumenthal RS, Polak J, Petri M, Gelber AC, et al. Longitudinal predictors of progression of carotid atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2011;63(11):3216–25. doi:10.1002/art.30542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E, et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166(2):199–207. doi:10.1016/j.ahj.2013.03.018. e15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: causal relationship and potential mechanisms. BioFactors. 2009;35(2):120–9. doi:10.1002/biof.17.

    Article  CAS  PubMed  Google Scholar 

  21. Nakazawa F, Matsuno H, Yudoh K, Katayama R, Sawai T, Uzuki M, et al. Methotrexate inhibits rheumatoid synovitis by inducing apoptosis. J Rheumatol. 2001;28(8):1800–8.

    CAS  PubMed  Google Scholar 

  22. Kraan MC, Reece RJ, Barg EC, Smeets TJ, Farnell J, Rosenburg R, et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 2000;43(8):1820–30. doi:10.1002/1529-0131(200008)43:8<1820::AID-ANR18>3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  23. Yue C, You X, Zhao L, Wang H, Tang F, Zhang F, et al. The effects of adalimumab and methotrexate treatment on peripheral Th17 cells and IL-17/IL-6 secretion in rheumatoid arthritis patients. Rheumatol Int. 2010;30(12):1553–7. doi:10.1007/s00296-009-1179-x.

    Article  CAS  PubMed  Google Scholar 

  24. Kraan MC, Smeets TJ, van Loon MJ, Breedveld FC, Dijkmans BA, Tak PP. Differential effects of leflunomide and methotrexate on cytokine production in rheumatoid arthritis. Ann Rheum Dis. 2004;63(9):1056–61. doi:10.1136/ard.2003.014738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montesinos MC, Takedachi M, Thompson LF, Wilder TF, Fernandez P, Cronstein BN. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5′-nucleotidase: findings in a study of ecto-5′-nucleotidase gene-deficient mice. Arthritis Rheum. 2007;56(5):1440–5. doi:10.1002/art.22643.

    Article  CAS  PubMed  Google Scholar 

  26. Reiss AB, Carsons SE, Anwar K, Rao S, Edelman SD, Zhang H, et al. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis Rheum. 2008;58(12):3675–83. doi:10.1002/art.24040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ronda N, Greco D, Adorni MP, Zimetti F, Favari E, Hjeltnes G, et al. Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthritis Rheumatol. 2015;67(5):1155–64. doi:10.1002/art.39039.

    Article  CAS  PubMed  Google Scholar 

  28. Thornton CC, Al-Rashed F, Calay D, Birdsey GM, Bauer A, Mylroie H, et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2015. doi:10.1136/annrheumdis-2014-206305.

    PubMed  Google Scholar 

  29. Naranjo A, Sokka T, Descalzo MA, Calvo-Alen J, Horslev-Petersen K, Luukkainen RK, et al. Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. Arthritis Res Ther. 2008;10(2):R30. doi:10.1186/ar2383.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solomon DH, Avorn J, Katz JN, Weinblatt ME, Setoguchi S, Levin R, et al. Immunosuppressive medications and hospitalization for cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(12):3790–8. doi:10.1002/art.22255.

    Article  CAS  PubMed  Google Scholar 

  31. Penn SK, Kao AH, Schott LL, Elliott JR, Toledo FG, Kuller L, et al. Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 2010;37(6):1136–42. doi:10.3899/jrheum.090994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Solomon DH, Garg R, Lu B, Todd DJ, Mercer E, Norton T, et al. Effect of hydroxychloroquine on insulin sensitivity and lipid parameters in rheumatoid arthritis patients without diabetes mellitus: a randomized, blinded crossover trial. Arthritis Care Res (Hoboken). 2014;66(8):1246–51. doi:10.1002/acr.22285.

    Article  CAS  Google Scholar 

  33. Tabit CE, Holbrook M, Shenouda SM, Dohadwala MM, Widlansky ME, Frame AA, et al. Effect of sulfasalazine on inflammation and endothelial function in patients with established coronary artery disease. Vasc Med. 2012;17(2):101–7. doi:10.1177/1358863X12440117.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silvennoinen O, Ihle JN, Schlessinger J, Levy DE. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature. 1993;366(6455):583–5. doi:10.1038/366583a0.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JE, Lee AS, Kim DH, Jung YJ, Lee S, Park BH, et al. Janex-1, a JAK3 inhibitor, ameliorates tumor necrosis factor-alpha-induced expression of cell adhesion molecules and improves myocardial vascular permeability in endotoxemic mice. Int J Mol Med. 2012;29(5):864–70. doi:10.3892/ijmm.2012.920.

    CAS  PubMed  Google Scholar 

  36. Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am J Pathol. 2000;157(6):1819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagsater D, Olofsson PS, Norgren L, Stenberg B, Sirsjo A. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon gamma. Biochem Biophys Res Commun. 2004;325(4):1187–93. doi:10.1016/j.bbrc.2004.10.160.

    Article  PubMed  Google Scholar 

  38. Nareika A, Sundararaj KP, Im YB, Game BA, Lopes-Virella MF, Huang Y. High glucose and interferon gamma synergistically stimulate MMP-1 expression in U937 macrophages by increasing transcription factor STAT1 activity. Atherosclerosis. 2009;202(2):363–71. doi:10.1016/j.atherosclerosis.2008.05.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ortiz-Munoz G, Martin-Ventura JL, Hernandez-Vargas P, Mallavia B, Lopez-Parra V, Lopez-Franco O, et al. Suppressors of cytokine signaling modulate JAK/STAT-mediated cell responses during atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29(4):525–31. doi:10.1161/ATVBAHA.108.173781.

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe S, Mu W, Kahn A, Jing N, Li JH, Lan HY, et al. Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am J Nephrol. 2004;24(4):387–92. doi:10.1159/000079706.

    Article  CAS  PubMed  Google Scholar 

  41. Tang C, Vaughan AM, Anantharamaiah GM, Oram JF. Janus kinase 2 modulates the lipid-removing but not protein-stabilizing interactions of amphipathic helices with ABCA1. J Lipid Res. 2006;47(1):107–14. doi:10.1194/jlr.M500240-JLR200.

    Article  CAS  PubMed  Google Scholar 

  42. Charles-Schoeman C, Fleischmann R, Davignon J, Schwartz H, Turner SM, Beysen C, et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 2015;67(3):616–25. doi:10.1002/art.38974. An interesting study exploring in vitro mechanisms of the effects of tofacitinib on endothelial dysfunction and reverse cholesterol transport.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci. 2009;116(3):219–30. doi:10.1042/CS20080196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, et al. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis. 2005;180(1):11–7. doi:10.1016/j.atherosclerosis.2004.11.016.

    Article  CAS  PubMed  Google Scholar 

  45. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24(11):2137–42. doi:10.1161/01.ATV.0000143933.20616.1b.

    Article  CAS  PubMed  Google Scholar 

  46. Dixon WG, Watson KD, Lunt M, Hyrich KL. British Society for Rheumatology Biologics Register Control Centre C, Silman AJ et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56(9):2905–12. doi:10.1002/art.22809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Daien CI, Duny Y, Barnetche T, Daures JP, Combe B, Morel J. Effect of TNF inhibitors on lipid profile in rheumatoid arthritis: a systematic review with meta-analysis. Ann Rheum Dis. 2012;71(6):862–8. doi:10.1136/annrheumdis-2011-201148.

    Article  CAS  PubMed  Google Scholar 

  48. Rios-Navarro C, de Pablo C, Collado-Diaz V, Orden S, Blas-Garcia A, Martinez-Cuesta MA, et al. Differential effects of anti-TNF-alpha and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur J Pharmacol. 2015;765:355–65. doi:10.1016/j.ejphar.2015.08.054.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, Garcia-Porrua C, Llorca J, Gonzalez-Gay MA. Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor alpha antibody. Arthritis and Rheumatism. 2004;51(3):447–50. doi:10.1002/art.20407.

    Article  CAS  PubMed  Google Scholar 

  50. Hurlimann D, Forster A, Noll G, Enseleit F, Chenevard R, Distler O, et al. Anti-tumor necrosis factor-alpha treatment improves endothelial function in patients with rheumatoid arthritis. Circulation. 2002;106(17):2184–7.

    Article  PubMed  Google Scholar 

  51. Komai N, Morita Y, Sakuta T, Kuwabara A, Kashihara N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod Rheumatol Japan Rheum Assoc. 2007;17(5):385–90. doi:10.1007/s10165-007-0605-8.

    Article  CAS  Google Scholar 

  52. Voloshyna I, Seshadri S, Anwar K, Littlefield MJ, Belilos E, Carsons SE, et al. Infliximab reverses suppression of cholesterol efflux proteins by TNF-alpha: a possible mechanism for modulation of atherogenesis. BioMed Res Int. 2014;2014:312647. doi:10.1155/2014/312647.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ingegnoli F, Fantini F, Griffini S, Soldi A, Meroni PL, Cugno M. Anti-tumor necrosis factor alpha therapy normalizes fibrinolysis impairment in patients with active rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(2):254–7.

    CAS  PubMed  Google Scholar 

  54. Del Porto F, Lagana B, Lai S, Nofroni I, Tinti F, Vitale M, et al. Response to anti-tumour necrosis factor alpha blockade is associated with reduction of carotid intima-media thickness in patients with active rheumatoid arthritis. Rheumatol (Oxford, England). 2007;46(7):1111–5.

    Article  Google Scholar 

  55. Maki-Petaja KM, Elkhawad M, Cheriyan J, Joshi FR, Ostor AJ, Hall FC, et al. Anti-tumor necrosis factor-alpha therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation. 2012;126(21):2473–80. doi:10.1161/CIRCULATIONAHA.112.120410.

    Article  PubMed  Google Scholar 

  56. Devlin CM, Kuriakose G, Hirsch E, Tabas I. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci U S A. 2002;99(9):6280–5. doi:10.1073/pnas.092324399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li RJ, Sun Y, Wang Q, Yang J, Yang Y, Song L et al. Ultrasound biomicroscopic imaging for interleukin-1 receptor antagonist-inhibiting atherosclerosis and markers of inflammation in atherosclerotic development in apolipoprotein-E knockout mice. Texas Heart Institute journal / from the Texas Heart Institute of St Luke’s Episcopal Hospital, Texas Children’s Hospital. 2015;42(4):319–26. doi:10.14503/THIJ-14-4318

  58. Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation. 1998;97(3):242–4.

    Article  CAS  PubMed  Google Scholar 

  59. Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60. doi:10.1161/01.ATV.0000064374.15232.C3.

    Article  CAS  PubMed  Google Scholar 

  60. Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117(20):2662–9. doi:10.1161/CIRCULATIONAHA.107.731877.

    Article  CAS  PubMed  Google Scholar 

  61. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605. doi:10.1016/j.ahj.2011.06.012.

    Article  CAS  PubMed  Google Scholar 

  62. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342(12):836–43.

    Article  CAS  PubMed  Google Scholar 

  63. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS, Borglykke A, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578–89. doi:10.1093/eurheartj/eht367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huber SA, Sakkinen P, Conze D, Hardin N, Tracy R. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1999;19(10):2364–7.

    Article  CAS  PubMed  Google Scholar 

  65. Collaboration IRGCERF, Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205–13. doi:10.1016/S0140-6736(11)61931-4.

    Article  Google Scholar 

  66. Maier W, Altwegg LA, Corti R, Gay S, Hersberger M, Maly FE, et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation. 2005;111(11):1355–61. doi:10.1161/01.CIR.0000158479.58589.0A.

    Article  CAS  PubMed  Google Scholar 

  67. McInnes IB, Thompson L, Giles JT, Bathon JM, Salmon JE, Beaulieu AD, et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann Rheum Dis. 2013. doi:10.1136/annrheumdis-2013-204345. A randomized clinical trial of tocilizumab in rheumatoid arthritis patients with cardiovascular intermediates as the primary outcome measures.

    Google Scholar 

  68. Rao VU, Pavlov A, Klearman M, Musselman D, Giles JT, Bathon JM, et al. An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheumatol. 2015;67(2):372–80. doi:10.1002/art.38920.

    Article  CAS  PubMed  Google Scholar 

  69. Curtis JR, Perez-Gutthann S, Suissa S, Napalkov P, Singh N, Thompson L, et al. Tocilizumab in rheumatoid arthritis: a case study of safety evaluations of a large postmarketing data set from multiple data sources. Semin Arthritis Rheum. 2015;44(4):381–8. doi:10.1016/j.semarthrit.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  70. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A. 1995;92(9):3893–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(4):864–70. doi:10.1161/01.ATV.0000206122.61591.ff.

    Article  CAS  PubMed  Google Scholar 

  72. Buono C, Pang H, Uchida Y, Libby P, Sharpe AH, Lichtman AH. B7-1/B7-2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation. 2004;109(16):2009–15. doi:10.1161/01.CIR.0000127121.16815.F1.

    Article  CAS  PubMed  Google Scholar 

  73. Smolen JS, Wollenhaupt J, Gomez-Reino JJ, Grassi W, Gaillez C, Poncet C, et al. Attainment and characteristics of clinical remission according to the new ACR-EULAR criteria in abatacept-treated patients with early rheumatoid arthritis: new analyses from the Abatacept study to Gauge Remission and joint damage progression in methotrexate (MTX)-naive patients with Early Erosive rheumatoid arthritis (AGREE). Arthritis Res Ther. 2015;17:157. doi:10.1186/s13075-015-0671-9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ewing MM, Karper JC, Abdul S, de Jong RC, Peters HA, de Vries MR, et al. T-cell co-stimulation by CD28-CD80/86 and its negative regulator CTLA-4 strongly influence accelerated atherosclerosis development. Int J Cardiol. 2013;168(3):1965–74. doi:10.1016/j.ijcard.2012.12.085.

    Article  CAS  PubMed  Google Scholar 

  75. Ma K, Lv S, Liu B, Liu Z, Luo Y, Kong W, et al. CTLA4-IgG ameliorates homocysteine-accelerated atherosclerosis by inhibiting T-cell overactivation in apoE(−/−) mice. Cardiovasc Res. 2013;97(2):349–59. doi:10.1093/cvr/cvs330.

    Article  CAS  PubMed  Google Scholar 

  76. Mathieu S, Couderc M, Glace B, Pereira B, Tournadre A, Dubost JJ, et al. Effects of 6 months of abatacept treatment on aortic stiffness in patients with rheumatoid arthritis. Biologics Targets Ther. 2013;7:259–64. doi:10.2147/BTT.S52003.

    Article  CAS  Google Scholar 

  77. Provan SA, Berg IJ, Hammer HB, Mathiessen A, Kvien TK, Semb AG. The impact of newer biological disease modifying anti-rheumatic drugs on cardiovascular risk factors: a 12-month longitudinal study in rheumatoid arthritis patients treated with rituximab abatacept and tociliziumab. PLoS One. 2015;10(6), e0130709. doi:10.1371/journal.pone.0130709.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ursini F, Russo E, Letizia Hribal M, Mauro D, Savarino F, Bruno C, et al. Abatacept improves whole-body insulin sensitivity in rheumatoid arthritis: an observational study. Medicine (Baltimore). 2015;94(21):e888. doi:10.1097/MD.0000000000000888.

    Article  CAS  Google Scholar 

  79. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101(25):2883–8.

    Article  CAS  PubMed  Google Scholar 

  80. Winchester R, Giles JT, Nativ S, Downer K, Zhang HZ, Bag-Ozbek A, et al. Association of elevations of specific T cell and monocyte subpopulations in rheumatoid arthritis with subclinical coronary artery atherosclerosis. Arthritis Rheumatol. 2016;68(1):92–102. doi:10.1002/art.39419.

    Article  CAS  PubMed  Google Scholar 

  81. Gronwall C, Reynolds H, Kim JK, Buyon J, Goldberg JD, Clancy RM, et al. Relation of carotid plaque with natural IgM antibodies in patients with systemic lupus erythematosus. Clin Immunol. 2014;153(1):1–7. doi:10.1016/j.clim.2014.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A, et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med. 2010;207(5):1081–93. doi:10.1084/jem.20092243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, et al. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med. 2010;207(8):1579–87. doi:10.1084/jem.20100155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kerekes G, Soltesz P, Der H, Veres K, Szabo Z, Vegvari A, et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin Rheumatol. 2009;28(6):705–10. doi:10.1007/s10067-009-1095-1.

    Article  PubMed  Google Scholar 

  85. Raterman HG, Levels H, Voskuyl AE, Lems WF, Dijkmans BA, Nurmohamed MT. HDL protein composition alters from proatherogenic into less atherogenic and proinflammatory in rheumatoid arthritis patients responding to rituximab. Ann Rheum Dis. 2013;72(4):560–5. doi:10.1136/annrheumdis-2011-201228.

    Article  CAS  PubMed  Google Scholar 

  86. Harrold LR, Reed GW, Magner R, Shewade A, John A, Greenberg JD, et al. Comparative effectiveness and safety of rituximab versus subsequent anti-tumor necrosis factor therapy in patients with rheumatoid arthritis with prior exposure to anti-tumor necrosis factor therapies in the United States Corrona registry. Arthritis Res Ther. 2015;17:256. doi:10.1186/s13075-015-0776-1.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lundgren M, Buren J, Ruge T, Myrnas T, Eriksson JW. Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J Clin Endocrinol Metab. 2004;89(6):2989–97. doi:10.1210/jc.2003-031157.

    Article  CAS  PubMed  Google Scholar 

  88. del Rincon I, Battafarano DF, Restrepo JF, Erikson JM, Escalante A. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis Heumatol. 2014;66(2):264–72. doi:10.1002/art.38210. A carefully analyzed investigation exploring exposure thresholds for cardiovascular safety vs. harm associated with the use of chronic corticosteroids in rheumatoid arthritis patients.

    Article  Google Scholar 

  89. Le NT, Takei Y, Izawa-Ishizawa Y, Heo KS, Lee H, Smrcka AV, et al. Identification of activators of ERK5 transcriptional activity by high-throughput screening and the role of endothelial ERK5 in vasoprotective effects induced by statins and antimalarial agents. J Immunol. 2014;193(7):3803–15. doi:10.4049/jimmunol.1400571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ruscitti P, Cipriani P, Cantarini L, Liakouli V, Vitale A, Carubbi F, et al. Efficacy of inhibition of IL-1 in patients with rheumatoid arthritis and type 2 diabetes mellitus: two case reports and review of the literature. J Med Case Rep. 2015;9:123. doi:10.1186/s13256-015-0603-y.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Protogerou AD, Zampeli E, Fragiadaki K, Stamatelopoulos K, Papamichael C, Sfikakis PP. A pilot study of endothelial dysfunction and aortic stiffness after interleukin-6 receptor inhibition in rheumatoid arthritis. Atherosclerosis. 2011;219(2):734–6. doi:10.1016/j.atherosclerosis.2011.09.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon T. Giles.

Ethics declarations

Conflict of Interest

JTG reports that he is a consultant for Genentech and a member of the Steering Committee for the ENTRACTE trial discussed in this manuscript. He was a coinvestigator on the MEASURE trial and is a coinvestigator on the TARGET trial, both discussed in the manuscript. The TARGET trial is funded by the National Institute of Arthritis, Musculoskeletal, and Skin Diseases Branch of the National Institutes of Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rheumatoid Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giles, J.T. Rheumatoid Arthritis Pharmacotherapies: Do They Have Anti-Atherosclerotic Activity?. Curr Rheumatol Rep 18, 27 (2016). https://doi.org/10.1007/s11926-016-0578-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-016-0578-8

Keywords

Navigation