Skip to main content

Advertisement

Log in

Critical Appraisal of the Utility and Limitations of Animal Models of Scleroderma

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Scleroderma, also called systemic sclerosis (SSc), is an autoimmune connective tissue disease characterized by abnormality of the immune system, cardiovascular disorder, and fibrosis of the skin, lung, kidney, and other internal organs. Skin symptom and stiffness of the skin with accumulation of collagen cause severe disability, and cardiovascular and lung complications lead to high mortality. Despite recent progress, therapies for these complications in SSc are limited and the underlying mechanisms are poorly understood. Animal models are one strategy to identify molecular mechanisms and pathways underlying these complications of SSc and could provide a mechanistic basis for a design of clinical trials. However, although several animal models have been reported to reproduce some aspects of SSc, none of them recapitulates all of the pathological features of SSc. In this review, we describe previously reported animal models of scleroderma and discuss their utility and limitations in efforts to understand the mechanisms underlying scleroderma and develop new treatments for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis. 2007;66:940–4.

    Article  PubMed Central  PubMed  Google Scholar 

  2. ten Freyhaus H, Dumitrescu D, Berghausen E, Vantler M, Caglayan E, Rosenkranz S. Imatinib mesylate for the treatment of pulmonary arterial hypertension. Expert Opin Invest Drugs. 2012;21:119–34.

    Article  Google Scholar 

  3. Perrin S. Preclinical research: make mouse studies work. Nature. 2014;507:423–5.

    Article  PubMed  Google Scholar 

  4. Asano Y, Sato S. Animal models of scleroderma: current state and recent development. Curr Rheumatol Rep. 2013;15:382.

    Article  PubMed  Google Scholar 

  5. Guldner HH, Szostecki C, Vosberg HP, Lakomek HJ, Penner E, Bautz FA. Scl 70 autoantibodies from scleroderma patients recognize a 95 kDa protein identified as DNA topoisomerase I. Chromosoma. 1986;94:132–8.

    Article  CAS  PubMed  Google Scholar 

  6. Manoussakis MN, Constantopoulos SH, Gharavi AE, Moutsopoulos HM. Pulmonary involvement in systemic sclerosis. Association with anti-Scl 70 antibody and digital pitting. Chest. 1987;92:509–13.

    Article  CAS  PubMed  Google Scholar 

  7. Weiner ES, Earnshaw WC, Senecal JL, Bordwell B, Johnson P, Rothfield NF. Clinical associations of anticentromere antibodies and antibodies to topoisomerase I. A study of 355 patients. Arthritis Rheum. 1988;31:378–85.

    Article  CAS  PubMed  Google Scholar 

  8. de Rooij DJ, Van de Putte LB, Habets WJ, Van Venrooij WJ. Marker antibodies in scleroderma and polymyositis: clinical associations. Clin Rheumatol. 1989;8:231–7.

    Article  PubMed  Google Scholar 

  9. Hu PQ, Fertig N, Medsger Jr TA, Wright TM. Correlation of serum anti-DNA topoisomerase I antibody levels with disease severity and activity in systemic sclerosis. Arthritis Rheum. 2003;48:1363–73.

    Article  CAS  PubMed  Google Scholar 

  10. Sato S, Hamaguchi Y, Hasegawa M, Takehara K. Clinical significance of anti-topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Rheumatology (Oxford). 2001;40:1135–40.

    Article  CAS  Google Scholar 

  11. Muryoi T, Kasturi KN, Kafina MJ, Cram DS, Harrison LC, Sasaki T, et al. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med. 1992;175:1103–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kasturi KN, Shibata S, Muryoi T, Bona CA. Tight-skin mouse an experimental model for scleroderma. Int Rev Immunol. 1994;11:253–71.

    Article  CAS  PubMed  Google Scholar 

  13. Gerber EE, Gallo EM, Fontana SC, Davis EC, Wigley FM, Huso DL, et al. Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature. 2013;503:126–30. In this paper, two kinds of fibrillin 1 gene-mutated mice were generated to determine the mechanisms by which fibrillin 1 mutations cause stiff skin syndrome (SSS) in patients. Both lines of mutant mice phenocopied SSS with increased collagen deposition in the skin, suggesting that they could be good models for evaluating therapeutic interventions. The authors also showed that mutations in the integrin binding domain of fibrillin 1 resulted in the upregulation of α5β1 and αvβ3 integrins in dermal cells, especially plasmacytoid dendritic cells, and that inhibition of TGF-β or αvβ3 or activation of β1 integrins was effective in inhibiting the mutant phenotype. These results thus identified three potential targets for therapeutic intervention in SSS patients and perhaps in patients with cutaneous fibrosis from scleroderma.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, et al. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol. 2008;172:1650–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization with DNA topoisomerase I and Freund’s complete adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. Arthritis Rheum. 2011;63:3575–85.

    Article  CAS  PubMed  Google Scholar 

  16. Hu PQ, Hurwitz AA, Oppenheim JJ. Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice. J Rheumatol. 2007;34:2243–52.

    CAS  PubMed  Google Scholar 

  17. Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, et al. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum. 2001;44:2653–64.

    Article  CAS  PubMed  Google Scholar 

  18. Servettaz A, Guilpain P, Goulvestre C, Chereau C, Hercend C, Nicco C, et al. Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis. 2007;66:1202–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Servettaz A, Goulvestre C, Kavian N, Nicco C, Guilpain P, Chereau C, et al. Selective oxidation of DNA topoisomerase 1 induces systemic sclerosis in the mouse. J Immunol. 2009;182:5855–64.

    Article  CAS  PubMed  Google Scholar 

  20. Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, et al. Animal model of sclerotic skin. I. Local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol. 1999;112:456–62.

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto T, Nishioka K. Cellular and molecular mechanisms of bleomycin-induced murine scleroderma: current update and future perspective. Exp Dermatol. 2005;14:81–95.

    Article  CAS  PubMed  Google Scholar 

  22. Braun RK, Ferrick DA, Sterner-Kock A, Kilshaw PJ, Hyde DM, Giri SN. Comparison of two models of bleomycin-induced lung fibrosis in mouse on the level of leucocytes and T cell subpopulations in bronchoalveolar lavage. Comp Haematol Int. 1996;6:141–8.

    Article  Google Scholar 

  23. Ishikawa H, Takeda K, Okamoto A, Matsuo S, Isobe K. Induction of autoimmunity in a bleomycin-induced murine model of experimental systemic sclerosis: an important role for CD4+ T cells. J Invest Dermatol. 2009;129:1688–95.

    Article  CAS  PubMed  Google Scholar 

  24. Schroeder MA, DiPersio JF. Mouse models of graft-versus-host disease: advances and limitations. Dis Model Mech. 2011;4:318–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vogelsang GB, Lee L, Bensen-Kennedy DM. Pathogenesis and treatment of graft-versus-host disease after bone marrow transplant. Annu Rev Med. 2003;54:29–52.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, McCormick LL, Desai SR, Wu C, Gilliam AC. Murine sclerodermatous graft-versus-host disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J Immunol. 2002;168:3088–98.

    Article  CAS  PubMed  Google Scholar 

  27. Lawley TJ, Peck GL, Moutsopoulos HM, Gratwohl AA, Deisseroth AB. Scleroderma, Sjögren-like syndrome, and chronic graft-versus-host disease. Ann Intern Med. 1977;87:707–9.

    Article  CAS  PubMed  Google Scholar 

  28. Claman HN, Jaffee BD, Huff JC, Clark RA. Chronic graft-versus-host disease as a model for scleroderma. II. Mast cell depletion with deposition of immunoglobulins in the skin and fibrosis. Cell Immunol. 1985;94:73–84.

    Article  CAS  PubMed  Google Scholar 

  29. Ruzek MC, Jha S, Ledbetter S, Richards SM, Garman RD. A modified model of graft-versus-host-induced systemic sclerosis (scleroderma) exhibits all major aspects of the human disease. Arthritis Rheum. 2004;50:1319–31.

    Article  PubMed  Google Scholar 

  30. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52:11–34.

    CAS  PubMed  Google Scholar 

  31. Brecher P. Angiotensin II and cardiac fibrosis. Trends Cardiovasc Med. 1996;6:193–8.

    Article  CAS  PubMed  Google Scholar 

  32. Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38:635–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bataller R, Sancho-Bru P, Gines P, Brenner DA. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal. 2005;7:1346–55.

    Article  CAS  PubMed  Google Scholar 

  34. Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012;44:465–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kawaguchi Y, Takagi K, Hara M, Fukasawa C, Sugiura T, Nishimagi E, et al. Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors. Arthritis Rheum. 2004;50:216–26.

    Article  CAS  PubMed  Google Scholar 

  36. Marut W, Kavian N, Servettaz A, Hua-Huy T, Nicco C, Chereau C, et al. Amelioration of systemic fibrosis in mice by angiotensin II receptor blockade. Arthritis Rheum. 2013;65:1367–77.

    Article  CAS  PubMed  Google Scholar 

  37. Stawski L, Han R, Bujor AM, Trojanowska M. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther. 2012;14:R194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Heeneman S, Sluimer JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res. 2007;101:441–54.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Q, Ishibashi M, Hiasa K, Tan C, Takeshita A, Egashira K. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension. 2004;44:264–70.

    Article  CAS  PubMed  Google Scholar 

  40. Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, et al. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther. 2008;10:201.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, et al. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc Natl Acad Sci U S A. 2008;105:10525–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Maurer B, Busch N, Jungel A, Pileckyte M, Gay RE, Michel BA, et al. Transcription factor Fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation. 2009;120:2367–76.

    Article  CAS  PubMed  Google Scholar 

  43. Biasin V, Marsh LM, Egemnazarov B, Wilhelm J, Ghanim B, Klepetko W, et al. Meprin beta, a novel mediator of vascular remodelling underlying pulmonary hypertension. J Pathol. 2014;233:7–17. The authors performed a microarray analysis and found that meprin 1 is the most upregulated gene in Fra-2 tg lungs at 8 weeks of age. They also showed that meprin 1 expression is localized in vessels in Fra-2 tg lungs and its expression is elevated in the lungs of patients with idiopathic pulmonary arterial hypertension, suggesting a potential role of meprin 1 in primary and secondary pulmonary hypertension.

    Article  CAS  PubMed  Google Scholar 

  44. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford). 2008;47 Suppl 5:v2–4.

    Article  CAS  Google Scholar 

  45. Maurer B, Reich N, Juengel A, Kriegsmann J, Gay RE, Schett G, et al. Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis. Ann Rheum Dis. 2012;71:1382–7.

    Article  CAS  PubMed  Google Scholar 

  46. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Verrecchia F, Mauviel A, Farge D. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev. 2006;5:563–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, et al. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 2007;56:334–44.

    Article  CAS  PubMed  Google Scholar 

  49. Denton CP, Zheng B, Evans LA, Shi-wen X, Ong VH, Fisher I, et al. Fibroblast-specific expression of a kinase-deficient type II transforming growth factor beta (TGFbeta) receptor leads to paradoxical activation of TGFbeta signaling pathways with fibrosis in transgenic mice. J Biol Chem. 2003;278:25109–19.

    Article  CAS  PubMed  Google Scholar 

  50. Weis-Garcia F, Massague J. Complementation between kinase-defective and activation-defective TGF-beta receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 1996;15:276–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Brand T, MacLellan WR, Schneider MD. A dominant-negative receptor for type beta transforming growth factors created by deletion of the kinase domain. J Biol Chem. 1993;268:11500–3.

    CAS  PubMed  Google Scholar 

  52. Derrett-Smith EC, Dooley A, Gilbane AJ, Trinder SL, Khan K, Baliga R, et al. Endothelial injury in a transforming growth factor beta-dependent mouse model of scleroderma induces pulmonary arterial hypertension. Arthritis Rheum. 2013;65:2928–39. This paper reported that TBRIIΔk mice develop pulmonary vascular remodeling characterized by medial thickening, perivascular inflammatory cell infiltrates, and increase in right ventricular pressure. Induction of endothelial cell injury further enhances this phenotype. These mice could thus be useful to evaluate the significance of TGF-β-associated signals in SSc with pulmonary arterial hypertension.

    Article  CAS  PubMed  Google Scholar 

  53. Iwayama T, Olson LE. Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep. 2013;15:304.

    Article  PubMed  Google Scholar 

  54. Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, Mancini M, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med. 2006;354:2667–76.

    Article  CAS  PubMed  Google Scholar 

  55. Olson LE, Soriano P. Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell. 2009;16:303–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  58. Guo Y, Xiao L, Sun L, Liu F. Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res. 2012;61:337–46.

    CAS  PubMed  Google Scholar 

  59. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003;162:1495–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004;279:35503–9.

    Article  CAS  PubMed  Google Scholar 

  61. Wei J, Melichian D, Komura K, Hinchcliff M, Lam AP, Lafyatis R, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum. 2011;63:1707–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, et al. Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 2012;64:2734–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ben-David Y, Giddens EB, Bernstein A. Identification and mapping of a common proviral integration site Fli-1 in erythroleukemia cells induced by friend murine leukemia virus. Proc Natl Acad Sci U S A. 1990;87:1332–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Masuya M, Moussa O, Abe T, Deguchi T, Higuchi T, Ebihara Y, et al. Dysregulation of granulocyte, erythrocyte, and NK cell lineages in Fli-1 gene-targeted mice. Blood. 2005;105:95–102.

    Article  CAS  PubMed  Google Scholar 

  65. Nakerakanti SS, Kapanadze B, Yamasaki M, Markiewicz M, Trojanowska M. Fli1 and Ets1 have distinct roles in connective tissue growth factor/CCN2 gene regulation and induction of the profibrotic gene program. J Biol Chem. 2006;281:25259–69.

    Article  CAS  PubMed  Google Scholar 

  66. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M. Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem. 2001;276:20839–48.

    Article  CAS  PubMed  Google Scholar 

  67. Kubo M, Czuwara-Ladykowska J, Moussa O, Markiewicz M, Smith E, Silver RM, et al. Persistent down-regulation of Fli1, a suppressor of collagen transcription, in fibrotic scleroderma skin. Am J Pathol. 2003;163:571–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Asano Y, Markiewicz M, Kubo M, Szalai G, Watson DK, Trojanowska M. Transcription factor Fli1 regulates collagen fibrillogenesis in mouse skin. Mol Cell Biol. 2009;29:425–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13:167–77.

    Article  CAS  PubMed  Google Scholar 

  70. Spyropoulos DD, Pharr PN, Lavenburg KR, Jackers P, Papas TS, Ogawa M, et al. Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol. 2000;20:5643–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Asano Y, Stawski L, Hant F, Highland K, Silver R, Szalai G, et al. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am J Pathol. 2010;176:1983–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Green MC, Sweet HO, Bunker LE. Tight-skin, a new mutation of the mouse causing excessive growth of connective tissue and skeleton. Am J Pathol. 1976;82:493–512.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, et al. A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 1996;6:300–13.

    Article  CAS  PubMed  Google Scholar 

  74. Menton DN, Hess RA, Lichtenstein JR, Eisen A. The structure and tensile properties of the skin of tight-skin (Tsk) mutant mice. J Invest Dermatol. 1978;70:4–10.

    Article  CAS  PubMed  Google Scholar 

  75. Menton DN, Hess RA. The ultrastructure of collagen in the dermis of tight-skin (Tsk) mutant mice. J Invest Dermatol. 1980;74:139–47.

    Article  CAS  PubMed  Google Scholar 

  76. Jimenez SA, Millan A, Bashey RI. Scleroderma-like alterations in collagen metabolism occurring in the TSK (tight skin) mouse. Arthritis Rheum. 1984;27:180–5.

    Article  CAS  PubMed  Google Scholar 

  77. Wallace VA, Kondo S, Kono T, Xing Z, Timms E, Furlonger C, et al. A role for CD4+ T cells in the pathogenesis of skin fibrosis in tight skin mice. Eur J Immunol. 1994;24:1463–6.

    Article  CAS  PubMed  Google Scholar 

  78. Bocchieri MH, Henriksen PD, Kasturi KN, Muryoi T, Bona CA, Jimenez SA. Evidence for autoimmunity in the tight skin mouse model of systemic sclerosis. Arthritis Rheum. 1991;34:599–605.

    Article  CAS  PubMed  Google Scholar 

  79. Saito E, Fujimoto M, Hasegawa M, Komura K, Hamaguchi Y, Kaburagi Y, et al. CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest. 2002;109:1453–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Shibata S, Muryoi T, Saitoh Y, Brumeanu TD, Bona CA, Kasturi KN. Immunochemical and molecular characterization of anti-RNA polymerase I autoantibodies produced by tight skin mouse. J Clin Invest. 1993;92:984–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Hatakeyama A, Kasturi KN, Wolf I, Phelps RG, Bona CA. Correlation between the concentration of serum anti-topoisomerase I autoantibodies and histological and biochemical alterations in the skin of tight skin mice. Cell Immunol. 1996;167:135–40.

    Article  CAS  PubMed  Google Scholar 

  82. Szapiel SV, Fulmer JD, Hunninghake GW, Elson NA, Kawanami O, Ferrans VJ, et al. Hereditary emphysema in the tight-skin (Tsk/+) mouse. Am Rev Respir Dis. 1981;123:680–5.

    CAS  PubMed  Google Scholar 

  83. Ito S, Bartolak-Suki E, Shipley JM, Parameswaran H, Majumdar A, Suki B. Early emphysema in the tight skin and pallid mice: roles of microfibril-associated glycoproteins, collagen, and mechanical forces. Am J Respir Cell Mol Biol. 2006;34:688–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Martorana PA, Wilkinson M, van Even P, Lungarella G. Tsk mice with genetic emphysema. Right ventricular hypertrophy occurs without hypertrophy of muscular pulmonary arteries or muscularization of arterioles. Am Rev Respir Dis. 1990;142:333–7.

    Article  CAS  PubMed  Google Scholar 

  85. Christner PJ, Peters J, Hawkins D, Siracusa LD, Jimenez SA. The tight skin 2 mouse. An animal model of scleroderma displaying cutaneous fibrosis and mononuclear cell infiltration. Arthritis Rheum. 1995;38:1791–8.

    Article  CAS  PubMed  Google Scholar 

  86. Gentiletti J, McCloskey LJ, Artlett CM, Peters J, Jimenez SA, Christner PJ. Demonstration of autoimmunity in the tight skin-2 mouse: a model for scleroderma. J Immunol. 2005;175:2418–26.

    Article  CAS  PubMed  Google Scholar 

  87. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, et al. Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med. 2010;2:23ra20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuyuki Tsujino or Dean Sheppard.

Ethics declarations

Conflict of Interest

Kazuyuki Tsujino and Dean Sheppard declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsujino, K., Sheppard, D. Critical Appraisal of the Utility and Limitations of Animal Models of Scleroderma. Curr Rheumatol Rep 18, 4 (2016). https://doi.org/10.1007/s11926-015-0553-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0553-9

Keywords

Navigation