Skip to main content

Advertisement

Log in

Cystine Growth Inhibition Through Molecular Mimicry: a New Paradigm for the Prevention of Crystal Diseases

  • Crystal Arthritis (MH Pillinger and S Krasnokutsky, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Cystinuria is a genetic disease marked by recurrent kidney stone formation, usually at a young age. It frequently leads to chronic kidney disease. Treatment options for cystinuria have been limited despite comprehensive understanding of its genetic pathophysiology. Currently available therapies suffer from either poor clinical adherence to the regimen or potentially serious adverse effects. Recently, we employed atomic force miscopy (AFM) to identify l-cystine dimethylester (CDME) as an effective molecular imposter of l-cystine, capable of inhibiting crystal growth in vitro. More recently, we demonstrated CDME’s efficacy in inhibiting l-cystine crystal growth in vivo utilizing a murine model of cystinuria. The application of AFM to discover inhibitors of crystal growth through structural mimicry suggests a novel approach to preventing and treating crystal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dello Strologo L, Pras E, Pontesilli C, et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol. 2002;13:2547–53.

    Article  PubMed  Google Scholar 

  2. Levy FL, Adams-Huet B, Pak CY. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am J Med. 1995;98:50–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pahira JJ. Management of the patient with cystinuria. Urol Clin N Am. 1987;14:339–46.

    CAS  Google Scholar 

  4. Milliner DS, Murphy ME. Urolithiasis in pediatric patients. Mayo Clin Proc. 1993;68:241–8.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed K, Dasgupta P, Khan MS. Cystine calculi: challenging group of stones. Postgrad Med J. 2006;82:799–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gambaro G, Favaro S, D’Angelo A. Risk for renal failure in nephrolithiasis. Am J Kidney Dis. 2001;37:233–43.

    Article  CAS  PubMed  Google Scholar 

  7. Knoll T, Zollner A, Wendt-Nordahl G, Michel MS, Alken P. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol. 2005;20:19–24.

    Article  PubMed  Google Scholar 

  8. Wollaston WH. On cystic oxide, a new species of urinary calculus. Philos Trans R Soc Lond. 1810;100:223–30.

    Article  Google Scholar 

  9. Ng CS, Streem SB. Contemporary management of cystinuria. J Endourol. 1999;13:647–51.

    Article  CAS  PubMed  Google Scholar 

  10. Thier S, Fox M, Segal S, Rosenberg LE. Cystinuria: in vitro demonstration of an intestinal transport defect. Science. 1964;143:482–4.

    Article  CAS  PubMed  Google Scholar 

  11. Thier SO, Segal S, Fox M, Blair A, Rosenberg LE. Cystinuria: defective intestinal transport of dibasic amino acids and cystine. J Clin Invest. 1965;44:442–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. McCarthy CF, Borland Jr JL, Lynch Jr HJ, Owen EE, Tyor MP. Defective uptake of basic amino acids and L-cystine by intestinal mucosa of patients with cystinuria. J Clin Invest. 1964;43:1518–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rosenberg LE, Durant JL, Holland JM. Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. N Engl J Med. 1965;273:1239–45.

    Article  CAS  PubMed  Google Scholar 

  14. Daniel H. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol. 2004;66:361–84.

    Article  CAS  PubMed  Google Scholar 

  15. Chillaron J, Font-Llitjos M, Fort J, et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol. 2010;6:424–34.

    Article  CAS  PubMed  Google Scholar 

  16. Harnevik L, Fjellstedt E, Molbaek A, Denneberg T, Soderkvist P. Mutation analysis of SLC7A9 in cystinuria patients in Sweden. Genet Test. 2003;7:13–20.

    Article  CAS  PubMed  Google Scholar 

  17. Peters T, Thaete C, Wolf S, et al. A mouse model for cystinuria type I. Hum Mol Genet. 2003;12:2109–20.

    Article  CAS  PubMed  Google Scholar 

  18. Feliubadalo L, Arbones ML, Manas S, et al. Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet. 2003;12:2097–108.

    Article  CAS  PubMed  Google Scholar 

  19. Ercolani M, Sahota A, Schuler C, et al. Bladder outlet obstruction in male cystinuria mice. Int Urol Nephrol. 2010;42:57–63.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jaeger P, Portmann L, Saunders A, Rosenberg LE, Thier SO. Anticystinuric effects of glutamine and of dietary sodium restriction. N Engl J Med. 1986;315:1120–3.

    Article  CAS  PubMed  Google Scholar 

  21. Lindell A, Denneberg T, Edholm E, Jeppsson JO. The effect of sodium intake on cystinuria with and without tiopronin treatment. Nephron. 1995;71:407–15.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez LM, Santos F, Malaga S, Martinez V. Effect of a low sodium diet on urinary elimination of cystine in cystinuric children. Nephron. 1995;71:416–8.

    Article  CAS  PubMed  Google Scholar 

  23. Goldfarb DS, Coe FL, Asplin JR. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 2006;69:1041–7.

    Article  CAS  PubMed  Google Scholar 

  24. Rodman JS, Blackburn P, Williams JJ, Brown A, Pospischil MA, Peterson CM. The effect of dietary protein on cystine excretion in patients with cystinuria. Clin Nephrol. 1984;22:273–8.

    CAS  PubMed  Google Scholar 

  25. Dent CE, Friedman M, Green H, Watson LC. Treatment of cystinuria. Br Med J. 1965;1:403–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sumorok N, Goldfarb DS. Update on cystinuria. Curr Opin Nephrol Hypertens. 2013;22:427–31.

    Article  CAS  PubMed  Google Scholar 

  27. Dolin DJ, Asplin JR, Flagel L, Grasso M, Goldfarb DS. Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol. 2005;19:429–32.

    Article  PubMed  Google Scholar 

  28. Dent CE, Senior B. Studies on the treatment of cystinuria. Br J Urol. 1955;27:317–32.

    Article  CAS  PubMed  Google Scholar 

  29. Nakagawa Y, Asplin JR, Goldfarb DS, Parks JH, Coe FL. Clinical use of cystine supersaturation measurements. J Urol. 2000;164:1481–5.

    Article  CAS  PubMed  Google Scholar 

  30. Fjellstedt E, Denneberg T, Jeppsson JO, Tiselius HG. A comparison of the effects of potassium citrate and sodium bicarbonate in the alkalinization of urine in homozygous cystinuria. Urol Res. 2001;29:295–302.

    Article  CAS  PubMed  Google Scholar 

  31. Lotz M, Bartter FC. Stone dissolution with D-penicillamine in cystinuria. Br Med J. 1965;2:1408–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pak CY, Fuller C, Sakhaee K, Zerwekh JE, Adams BV. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol. 1986;136:1003–8.

    CAS  PubMed  Google Scholar 

  33. Chen CJ. Introduction to scanning tunneling microscopy. Monographs on the physics and chemistry of materials. 2nd ed. New York: Oxford University Press; 2008.

    Google Scholar 

  34. Ward MD, White HS. Scanning tunneling and atomic force microscopy of electrochemical interfaces. In: Vanýsek P, editor. Modern techniques in electroanalysis. New York: Wiley; 1996. p. 107–49.

    Google Scholar 

  35. Binnig G, Rohrer H, Gerber C, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett. 1982;49:57.

    Article  Google Scholar 

  36. Tersoff J, Hamann DR. Theory of the scanning tunneling microscope. Phys Rev B Condens Matter. 1985;31:805–13.

    Article  CAS  PubMed  Google Scholar 

  37. Baro AM, Miranda R, Alaman J, et al. Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature. 1985;315:253–4.

    Article  CAS  PubMed  Google Scholar 

  38. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.

    Article  PubMed  Google Scholar 

  39. Sheng X, Ward MD, Wesson JA. Adhesion between molecules and calcium oxalate crystals: critical interactions in kidney stone formation. J Am Chem Soc. 2003;125:2854–5.

    Article  CAS  PubMed  Google Scholar 

  40. Wesson JA, Ward MD. Role of crystal surface adhesion in kidney stone disease. Curr Opin Nephrol Hypertens. 2006;15:386–93.

    Article  CAS  PubMed  Google Scholar 

  41. Sheng X, Jung T, Wesson JA, Ward MD. Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci U S A. 2005;102:267–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sheng X, Ward MD, Wesson JA. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 2005;16:1904–8.

    Article  CAS  PubMed  Google Scholar 

  43. Hillier AC, Ward MD. Atomic force microscopy of the electrochemical nucleation and growth of molecular crystals. Science. 1994;263:1261–4.

    Article  CAS  PubMed  Google Scholar 

  44. Rimer JD, An Z, Zhu Z, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330:337–41. Demonstrates the ability to analyze real-time crystal growth in the presence of molecular imposters via atomic force microscopy.

    Article  CAS  PubMed  Google Scholar 

  45. Sizemore JP, Doherty MF. A new model for the effect of molecular imposters on the shape of faceted molecular crystals. Cryst Growth Des. 2009;9:2637–45.

    Article  CAS  Google Scholar 

  46. Liou YC, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000;406:322–4.

    Article  CAS  PubMed  Google Scholar 

  47. Guo S, Ward MD, Wesson JA. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir. 2002;18:4284–91.

    Article  CAS  Google Scholar 

  48. Jung T, Sheng X, Choi CK, Kim WS, Wesson JA, Ward MD. Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir. 2004;20:8587–96.

    Article  CAS  PubMed  Google Scholar 

  49. Sahota A, Parihar JS, Capaccione KM, et al. Novel cystine ester mimics for the treatment of cystinuria-induced urolithiasis in a knockout mouse model. Urology. 2014;84:1249. e9-. e15. Translates the inhibitory effect of CDME on cystine crystal growth from in vitro to in vivo settings utilizing a knockout mouse model.

    Article  PubMed  Google Scholar 

  50. Kessler A, Biasibetti M, da Silva Melo DA, et al. Antioxidant effect of cysteamine in brain cortex of young rats. Neurochem Res. 2008;33:737–44.

    Article  CAS  PubMed  Google Scholar 

  51. Figueiredo VC, Feksa LR, Wannmacher CM. Cysteamine prevents inhibition of adenylate kinase caused by cystine in rat brain cortex. Metab Brain Dis. 2009;24:723–31.

    Article  PubMed  Google Scholar 

  52. Rech VC, Feksa LR, Arevalo do Amaral MF, et al. Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatr Nephrol. 2007;22:1121–8.

    Article  PubMed  Google Scholar 

  53. Ben-Nun A, Bashan N, Potashnik R, Cohen-Luria R, Moran A. Cystine loading induces Fanconi’s syndrome in rats: in vivo and vesicle studies. Am J Physiol. 1993;265:F839–44.

    CAS  PubMed  Google Scholar 

  54. Foreman JW, Bowring MA, Lee J, States B, Segal S. Effect of cystine dimethylester on renal solute handling and isolated renal tubule transport in the rat: a new model of the Fanconi syndrome. Metabolism. 1987;36:1185–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a pilot project grant (no. 434056) from the Rare Kidney Stone Consortium (U54KD083908), which is a part of the NIH Rare Diseases Clinical Research Network, supported through collaboration between the NIH Office of Rare Diseases Research at the National Center for Advancing Translational Sciences and National Institute of Diabetes and Digestive and Kidney Disease.

Compliance with Ethics Guidelines

Conflict of Interest

Michael H. Lee declares no conflict of interest. Amrik Sahota declares the following: co-author of patent application, US patent application number 14/146,103; consultant, Omnia Diagnostics, North Brunswick, NJ. Michael D. Ward declares the following: Holder of patent US 20120316236 A1 David S. Goldfarb declares that he is a consultant to Astra Zeneca and Retrophin and owner of Ravine Group.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Goldfarb.

Additional information

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Sahota, A., Ward, M.D. et al. Cystine Growth Inhibition Through Molecular Mimicry: a New Paradigm for the Prevention of Crystal Diseases. Curr Rheumatol Rep 17, 33 (2015). https://doi.org/10.1007/s11926-015-0510-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0510-7

Keywords

Navigation