Skip to main content

Advertisement

Log in

Uric Acid and Xanthine Oxidoreductase in Wound Healing

  • CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Chronic wounds are an important health problem because they are difficult to heal and treatment is often complicated, lengthy and expensive. For a majority of sufferers the most common outcomes are long-term immobility, infection and prolonged hospitalisation. There is therefore an urgent need for effective therapeutics that will enhance ulcer healing and patient quality of life, and will reduce healthcare costs. Studies in our laboratory have revealed elevated levels of purine catabolites in wound fluid from patients with venous leg ulcers. In particular, we have discovered that uric acid is elevated in wound fluid, with higher concentrations correlating with increased wound severity. We have also revealed a corresponding depletion in uric acid precursors, including adenosine. Further, we have revealed that xanthine oxidoreductase, the enzyme that catalyses the production of uric acid, is present at elevated levels in wound fluid. Taken together, these findings provide evidence that xanthine oxidoreductase may have a function in the formation or persistence of chronic wounds. Here we describe the potential function of xanthine oxidoreductase and uric acid accumulation in the wound site, and the effect of xanthine oxidoreductase in potentiating the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cullum N et al. Compression for venous leg ulcers. Cochrane Database Syst Rev. 2000;3:CD000265.

    PubMed  Google Scholar 

  2. Abbade LP, Lastoria S. Venous ulcer: epidemiology, physiopathology, diagnosis and treatment. Int J Dermatol. 2005;44(6):449–56.

    Article  PubMed  Google Scholar 

  3. Simon DA, Dix FP, McCollum CN. Management of venous leg ulcers. Bmj. 2004;328(7452):1358–62.

    Article  PubMed  Google Scholar 

  4. Baker SR, Stacey MC. Epidemiology of chronic leg ulcers in Australia. Aust N Z J Surg. 1994;64(4):258–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kurd SK et al. Evaluation of the use of prognostic information for the care of individuals with venous leg ulcers or diabetic neuropathic foot ulcers. Wound Repair Regen. 2009;17(3):318–25.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stadelmann WK, Digenis AG, Tobin GR. Impediments to wound healing. Am J Surg. 1998;176(2A Suppl):39S–47S.

    Article  CAS  PubMed  Google Scholar 

  7. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez, M.L., et al., Elevated uric acid correlates with wound severity. Int Wound J.

  9. Montesinos MC et al. Wound healing is accelerated by agonists of adenosine A2 (G alpha s-linked) receptors. J Exp Med. 1997;186(9):1615–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Montesinos MC et al. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol. 2002;160(6):2009–18.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang S et al. Non-adenine based purines accelerate wound healing. Purinergic Signal. 2006;2(4):651–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Linden J. Adenosine in tissue protection and tissue regeneration. Mol Pharmacol. 2005;67(5):1385–7.

    Article  CAS  PubMed  Google Scholar 

  13. Valls MD, Cronstein BN, Montesinos MC. Adenosine receptor agonists for promotion of dermal wound healing. Biochem Pharmacol. 2009;77(7):1117–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chan ES et al. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 2006;54(8):2632–42.

    Article  CAS  PubMed  Google Scholar 

  15. Feoktistov I et al. Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res. 2002;90(5):531–8.

    Article  CAS  PubMed  Google Scholar 

  16. Khoa ND et al. Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol. 2001;167(7):4026–32.

    CAS  PubMed  Google Scholar 

  17. Hasko, G. and B. Cronstein, Regulation of inflammation by adenosine. Front Immunol. 4: p. 85.

  18. Cronstein BN et al. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990;85(4):1150–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hasko G et al. An agonist of adenosine A3 receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endotoxemic mice. Eur J Pharmacol. 1998;358(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  20. Hasko G et al. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 2007;113(2):264–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sipka S et al. Adenosine inhibits the release of interleukin-1beta in activated human peripheral mononuclear cells. Cytokine. 2005;31(4):258–63.

    Article  CAS  PubMed  Google Scholar 

  22. Bouma MG, van den Wildenberg FA, Buurman WA. Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol. 1996;270(2 Pt 1):C522–9.

    CAS  PubMed  Google Scholar 

  23. Bullough DA et al. Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol. 1995;155(5):2579–86.

    CAS  PubMed  Google Scholar 

  24. Cronstein BN et al. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986;78(3):760–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cronstein BN et al. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol. 1992;148(7):2201–6.

    CAS  PubMed  Google Scholar 

  26. Sullivan GW et al. Activation of A2A adenosine receptors inhibits expression of alpha 4/beta 1 integrin (very late antigen-4) on stimulated human neutrophils. J Leukoc Biol. 2004;75(1):127–34.

    Article  CAS  PubMed  Google Scholar 

  27. Desai A et al. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol. 2005;67(5):1406–13.

    Article  CAS  PubMed  Google Scholar 

  28. Chen JH et al. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32.

    Article  CAS  PubMed  Google Scholar 

  29. Kodama S et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–42.

    Article  CAS  PubMed  Google Scholar 

  30. Krishnan E. Hyperuricemia and incident heart failure. Circ Heart Fail. 2009;2(6):556–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ghaemi-Oskouie, F. and Y. Shi, The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep. 13(2): p. 160–6.

  32. Kippen I et al. Factors affecting urate solubility in vitro. Ann Rheum Dis. 1974;33(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tak HK, Cooper SM, Wilcox WR. Studies on the nucleation of monosodium urate at 37 degrees c. Arthritis Rheum. 1980;23(5):574–80.

    Article  CAS  PubMed  Google Scholar 

  34. Jin, M., et al., Uric acid, hyperuricemia and vascular diseases. Front Biosci (Landmark Ed). 17: p. 656–69.

  35. Martinon F et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.

    Article  CAS  PubMed  Google Scholar 

  36. Halle A et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008;9(8):857–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hornung V et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  39. Trengove NJ, Langton SR, Stacey MC. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair Regen. 1996;4(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  40. Trengove NJ et al. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen. 1999;7(6):442–52.

    Article  CAS  PubMed  Google Scholar 

  41. Shi Y, Mucsi AD, Ng G. Monosodium urate crystals in inflammation and immunity. Immunol Rev. 2010;233(1):203–17.

    Article  CAS  PubMed  Google Scholar 

  42. Torres R et al. Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis. 2009;68(10):1602–8.

    Article  CAS  PubMed  Google Scholar 

  43. Akahoshi T et al. Prevention of neutrophil apoptosis by monosodium urate crystals. Rheumatol Int. 1997;16(6):231–5.

    Article  CAS  PubMed  Google Scholar 

  44. Popa-Nita, O. and P.H. Naccache, Crystal-induced neutrophil activation. Immunol Cell Biol. 88(1): p. 32–40.

  45. Kono, H., et al., Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest. 120(6): p. 1939–49.

  46. McCarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med. 1961;54:452–60.

    Article  CAS  PubMed  Google Scholar 

  47. Ames BN et al. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Davies KJ et al. Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J. 1986;235(3):747–54.

    CAS  PubMed  Google Scholar 

  49. Squadrito GL et al. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys. 2000;376(2):333–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact. 1990;73(2–3):235–47.

    Article  CAS  PubMed  Google Scholar 

  51. Glantzounis GK et al. Uric acid and oxidative stress. Curr Pharm Des. 2005;11(32):4145–51.

    Article  CAS  PubMed  Google Scholar 

  52. Wlaschek M, Scharffetter-Kochanek K. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 2005;13(5):452–61.

    Article  PubMed  Google Scholar 

  53. Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999;11(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  54. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    CAS  PubMed  Google Scholar 

  55. Fridovich I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem Photobiol. 1978;28(4–5):733–41.

    Article  CAS  PubMed  Google Scholar 

  56. Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol. 1990;39(3):399–405.

    Article  CAS  PubMed  Google Scholar 

  57. Conner EM, Grisham MB. Inflammation, free radicals, and antioxidants. Nutrition. 1996;12(4):274–7.

    Article  CAS  PubMed  Google Scholar 

  58. Darr D, Fridovich I. Free radicals in cutaneous biology. J Invest Dermatol. 1994;102(5):671–5.

    Article  CAS  PubMed  Google Scholar 

  59. Finaud J, Lac G, Filaire E. Oxidative stress : relationship with exercise and training. Sports Med. 2006;36(4):327–58.

    Article  PubMed  Google Scholar 

  60. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.

    Article  CAS  PubMed  Google Scholar 

  61. Halliwell B, Gutteridge J. Free radicals in biology and medicine. Thirdth ed. New York: Oxford University Press Inc; 1999.

    Google Scholar 

  62. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002;30(6):620–50.

    Article  CAS  PubMed  Google Scholar 

  63. Schreck R, Baeuerle PA. A role for oxygen radicals as second messengers. Trends Cell Biol. 1991;1(2–3):39–42.

    Article  CAS  PubMed  Google Scholar 

  64. Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. Embo J. 1993;12(5):2005–15.

    CAS  PubMed  Google Scholar 

  65. Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Radic Biol Med. 1996;21(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  66. Wenk J et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem. 1999;274(36):25869–76.

    Article  CAS  PubMed  Google Scholar 

  67. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–17.

    CAS  PubMed  Google Scholar 

  68. Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther. 2006;111(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  69. Weiss SJ et al. Oxidative autoactivation of latent collagenase by human neutrophils. Science. 1985;227(4688):747–9.

    Article  CAS  PubMed  Google Scholar 

  70. Fu X et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276(44):41279–87.

    Article  CAS  PubMed  Google Scholar 

  71. Rayment EA, Upton Z, Shooter GK. Increased matrix metalloproteinase-9 (MMP-9) activity observed in chronic wound fluid is related to the clinical severity of the ulcer. Br J Dermatol. 2008;158(5):951–61.

    Article  CAS  PubMed  Google Scholar 

  72. Hoyos B et al. Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science. 1989;244(4903):457–60.

    Article  CAS  PubMed  Google Scholar 

  73. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Shakhov AN et al. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med. 1990;171(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  75. Page S et al. Xanthine oxidoreductase in human mammary epithelial cells: activation in response to inflammatory cytokines. Biochim Biophys Acta. 1998;1381(2):191–202.

    Article  CAS  PubMed  Google Scholar 

  76. Paget MS, Buttner MJ. Thiol-based regulatory switches. Annu Rev Genet. 2003;37:91–121.

    Article  CAS  PubMed  Google Scholar 

  77. Moran LK, Gutteridge JM, Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem. 2001;8(7):763–72.

    Article  CAS  PubMed  Google Scholar 

  78. Hawkins CL, Pattison DI, Davies MJ. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids. 2003;25(3–4):259–74.

    Article  CAS  PubMed  Google Scholar 

  79. Winter J et al. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell. 2008;135(4):691–701.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bindoli A, Fukuto JM, Forman HJ. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal. 2008;10(9):1549–64.

    Article  CAS  PubMed  Google Scholar 

  81. Posnett J, Franks PJ. Skin Breakdown, The Silent Epidemic. London, UK: Smith and Nephew; 2007.

    Google Scholar 

  82. Borges F, Fernandes E, Roleira F. Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem. 2002;9(2):195–217.

    Article  CAS  PubMed  Google Scholar 

  83. Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58(1):87–114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Allopurinol Tablets USP, DailyMed Current Medication Information.

  85. Sekundo W, Augustin AJ, Strempel I. Topical allopurinol or corticosteroids and acetylcysteine in the early treatment of experimental corneal alkali burns: a pilot study. Eur J Ophthalmol. 2002;12(5):366–72.

    CAS  PubMed  Google Scholar 

  86. Kitagawa J et al. Allopurinol gel mitigates radiation-induced mucositis and dermatitis. J Radiat Res (Tokyo). 2008;49(1):49–54.

    Article  Google Scholar 

  87. Wu XW et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34(1):78–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project is supported by the Wound Management Innovation Corporative Research Centre (WMI CRC).

Compliance with Ethics Guidelines

Conflict of Interest

Melissa L. Fernandez is employed by and received grant support from the WMI CRC, has received grant support from the National Health and Medical Research Council, and has had travel and/or accommodation expenses covered and/or reimbursed by the WMI CRC and Institute of Health and Biomedical Innovation. Zee Upton has received grant support from the National Health and Medical Research Council, has served as a consultant for Tissue Therapies Ltd. and Smith and Nephew, is a chief investigator on research grants from and/or involving Tissue Therapies Ltd., has applied for patents planned and/or filed through Tissue Therapies Ltd., has purchased stock in Tissue Therapies Ltd., has had travel and/or accommodation expenses covered and/or reimbursed by WMI CRC, and has undertaken contract research for Novartis. In addition, her husband is an inventor of patents licensed to Tissue Therapies Ltd., consults for Tissue Therapies Ltd., has personally bought stock in Tissue Therapies Ltd., and is a chief investigator on grants from and/or involving Tissue Therapies Ltd. Gary K. Shooter has received grant support from the National Health and Medical Research Council, has served as a consultant for Tissue Therapies Ltd., has had travel and/or accommodation expenses covered and/or reimbursed by the WMI CRC, and has worked on projects in which patent applications have been filed by the Queensland University of Technology. Melissa L. Fernandez and Gary K. Shooter are also named inventors on the aspects of this project that has been patented by The Wound Management Innovation Pty.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa L. Fernandez.

Additional information

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, M.L., Upton, Z. & Shooter, G.K. Uric Acid and Xanthine Oxidoreductase in Wound Healing. Curr Rheumatol Rep 16, 396 (2014). https://doi.org/10.1007/s11926-013-0396-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0396-1

Keywords

Navigation