Skip to main content

Advertisement

Log in

Morphogen Pathways in Systemic Sclerosis

  • SCLERODERMA (J VARGA, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The morphogen pathways Wnt, hedgehog, and Notch are key regulators of organ development and tissue homeostasis. In adults, the tightly regulated activity of morphogen pathways is essential for cell renewal and tissue regeneration. Loss of control and persistent activation of morphogen pathways, however, can lead to a variety of diseases, including malignancy and fibrotic disorders. In recent years, pathological activation of Wnt, hedgehog, and Notch pathways have been described in systemic sclerosis (SSc) and other fibrotic diseases. Experimental models reveal that morphogen pathways drive fibroblast activation and collagen release. In these model systems, genetic or pharmacological blockade of morphogen pathways inhibits collagen release and reduces experimental fibrosis. Importantly, inhibitors for Wnt, hedgehog, and Notch are already in clinical evaluation, thereby emphasizing the translational implications of these findings. Further experimental studies, however, should deepen our knowledge before initiating clinical trials with inhibitors of morphogen pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–67.

    Article  PubMed  CAS  Google Scholar 

  2. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989–2003.

    Article  PubMed  CAS  Google Scholar 

  3. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66(7):940–4.

    Article  PubMed  Google Scholar 

  4. Beyer C, Distler O, Distler JH. Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol. 2012;24(3):274–80.

    Article  PubMed  CAS  Google Scholar 

  5. Beyer C, Distler JH. The scientific basis for novel treatments of systemic sclerosis. F1000 Med Rep. 2009;1:95.

    Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  7. • Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012;31(12):2670–84. This insightful review on Wnt signaling highlights the key steps in the Wnt pathway and how they have been elucidated. An excellent paper to first enter the field of Wnt signaling.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998;391(6666):493–6.

    Article  PubMed  CAS  Google Scholar 

  9. Maniatis T. A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 1999;13(5):505–10.

    Article  PubMed  CAS  Google Scholar 

  10. Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell. 2006;127(1):139–55.

    Article  PubMed  CAS  Google Scholar 

  11. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31(12):2714–36.

    Article  PubMed  CAS  Google Scholar 

  12. •• Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun. 2012;3:735. This paper explores the important link between the two pro-fibrotic pathways canonical Wnt and TGFβ-signaling. The study demonstrates that canonical Wnt-signaling is induced by TGFβ in fibrotic disease, and promotes the progression of fibrosis.

    Article  PubMed  Google Scholar 

  13. He W, Dai C, Li Y, et al. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol. 2009;20(4):765–76.

    Article  PubMed  CAS  Google Scholar 

  14. Konigshoff M, Kramer M, Balsara N, et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest. 2009;119(4):772–87.

    PubMed  Google Scholar 

  15. Kobayashi K, Luo M, Zhang Y, et al. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2009;11(1):46–55.

    Article  PubMed  CAS  Google Scholar 

  16. Beyer C, Schramm A, Akhmetshina A, et al. beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis. 2012;71(5):761–7.

    Article  PubMed  CAS  Google Scholar 

  17. Lam AP, Flozak AS, Russell S, et al. Nuclear beta-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol. 2011;45(5):915–22.

    Article  PubMed  CAS  Google Scholar 

  18. • Wei J, Melichian D, Komura K, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: a novel mouse model for scleroderma? Arthritis Rheum. 2011;63(6):1707–17. Wei and colleagues are the first to show that canonical Wnt signaling promotes dermal fibrosis in SSc.

    Article  PubMed  CAS  Google Scholar 

  19. Wei J, Fang F, Lam AP, et al. Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 2012.

  20. Bayle J, Fitch J, Jacobsen K, et al. Increased expression of Wnt2 and SFRP4 in Tsk mouse skin: role of Wnt signaling in altered dermal fibrillin deposition and systemic sclerosis. J Invest Dermatol. 2008;128(4):871–81.

    Article  PubMed  CAS  Google Scholar 

  21. Bergmann C, Akhmetshina A, Dees C, et al. Inhibition of glycogen synthase kinase 3beta induces dermal fibrosis by activation of the canonical Wnt pathway. Ann Rheum Dis. 2011;70(12):2191–8.

    Article  PubMed  CAS  Google Scholar 

  22. Longo KA, Wright WS, Kang S, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem. 2004;279(34):35503–9.

    Article  PubMed  CAS  Google Scholar 

  23. Polakis P. Drugging Wnt signalling in cancer. EMBO J. 2012;31(12):2737–46.

    Article  PubMed  CAS  Google Scholar 

  24. Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011;145(6):851–62.

    Article  PubMed  CAS  Google Scholar 

  25. Chen B, Dodge ME, Tang W, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5(2):100–7.

    Article  PubMed  CAS  Google Scholar 

  26. Fujii N, You L, Xu Z, et al. An antagonist of dishevelled protein–protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res. 2007;67(2):573–9.

    Article  PubMed  CAS  Google Scholar 

  27. Huang SM, Mishina YM, Liu S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.

    Article  PubMed  CAS  Google Scholar 

  28. Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91–102.

    Article  PubMed  CAS  Google Scholar 

  29. Hao S, He W, Li Y, et al. Targeted Inhibition of {beta}-Catenin/CBP Signaling Ameliorates Renal Interstitial Fibrosis. J Am Soc Nephrol. 2011.

  30. Henderson Jr WR, Chi EY, Ye X, et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010;107(32):14309–14.

    Article  PubMed  Google Scholar 

  31. Distler A, Deloch L, Huang J, et al. Inactivation of tankyrases inhibits canonical Wnt signaling and reduces experimental fibrosis. Ann Rheum Dis. 2011;submitted.

  32. Beyer C, Schramm A, Akan H, et al. Blockade of canonical Wnt signaling inhibits experimental dermal fibrosis. Ann Rheum Dis. 2012;submitted.

  33. Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet. 2011;12(6):393–406.

    Article  PubMed  CAS  Google Scholar 

  34. Gallet A. Hedgehog morphogen: from secretion to reception. Trends Cell Biol. 2011;21(4):238–46.

    Article  PubMed  CAS  Google Scholar 

  35. Horn A, Palumbo K, Cordazzo C, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum. 2012.

  36. Horn A, Kireva T, Palumbo-Zerr K, et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann Rheum Dis. 2012;71(5):785–9.

    Article  PubMed  CAS  Google Scholar 

  37. Choi SS, Omenetti A, Syn WK, Diehl AM. The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol. 2011;43(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  38. • Zerr P, Palumbo-Zerr K, Akhmetshina A, et al. Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood. 2012;120(14):2909–17. The fibrotic disease manifestations of sclerodermatous chronic GvHD closely resemble those of diffuse-cutaneous SSc. This paper shows that inhibition of hedgehog signaling is effective in treating experimental sclGvHD without reducing the desired graft-versus-lymphoma effect.

  39. Lear JT. Oral hedgehog-pathway inhibitors for basal-cell carcinoma. N Engl J Med. 2012;366(23):2225–6.

    Article  PubMed  CAS  Google Scholar 

  40. Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell. 2009;16(5):633–47.

    Article  PubMed  CAS  Google Scholar 

  41. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138(17):3593–612.

    Article  PubMed  CAS  Google Scholar 

  42. Dees C, Tomcik M, Zerr P, et al. Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann Rheum Dis. 2011;70(7):1304–10.

    Article  PubMed  CAS  Google Scholar 

  43. • Kavian N, Servettaz A, Mongaret C, et al. Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model. Arthritis Rheum. 2010;62(11):3477–87. Kavian et al. are the first to demonstrate anti-fibrotic effects of Notch inhibition in an inflammatory model of SSc fibrosis.

    Article  PubMed  CAS  Google Scholar 

  44. Dees C, Zerr P, Tomcik M, et al. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63(5):1396–404.

    Article  PubMed  CAS  Google Scholar 

  45. Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol. 2012;226(2):394–403.

    Article  PubMed  CAS  Google Scholar 

  46. Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science. 1996;271(5257):1826–32.

    Article  PubMed  CAS  Google Scholar 

  47. Blokzijl A, Dahlqvist C, Reissmann E, et al. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol. 2003;163(4):723–8.

    Article  PubMed  CAS  Google Scholar 

  48. Dahlqvist C, Blokzijl A, Chapman G, et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development. 2003;130(24):6089–99.

    Article  PubMed  CAS  Google Scholar 

  49. Itoh F, Itoh S, Goumans MJ, et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 2004;23(3):541–51.

    Article  PubMed  CAS  Google Scholar 

  50. Imbimbo BP, Giardina GA. gamma-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem. 2011;11(12):1555–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Beyer is a research scholar at the Interdisciplinary Center of Clinical Research in Erlangen (“Erstantragsstellerprogramm”). Dr Distler is the recipient of grant A40 of the Interdisciplinary Center of Clinical Research (IZKF) in Erlangen, grants from the Deutsche Forschungsgesellschaft, and the Career Support Award of Medicine of the Ernst Jung Foundation.

Disclosure

Dr Distler has served on boards for Celgene Corp., Bayer, and JB Therapeutics; has served as a consultant and received honoraria from Celgene Corp., Bayer, JB Therapeutics, Boehringer Ingelheim GmbH, BioPharma, Active Biotech, Actelion Pharmaceuticals Ltd., Pfizer, Ergonex Pharma GmbH, and Bristol-Myers Squibb; has received payment for development of educational presentations (including service on speakers’ bureaus) from Celgene Corp., Bayer, JB Therapeutics, Boehringer Ingelheim GmbH, BioPharma, Active Biotech, Actelion Pharmaceuticals Ltd., Pfizer, Ergonex Pharma GmbH, Roche, and Bristol-Myers Squibb; and has held stock/stock options from 4D Science GmbH (a company by which his wife has also been employed). Dr Beyer reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beyer.

Additional information

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, C., Distler, J.H.W. Morphogen Pathways in Systemic Sclerosis. Curr Rheumatol Rep 15, 299 (2013). https://doi.org/10.1007/s11926-012-0299-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-012-0299-6

Keywords

Navigation