Skip to main content

Advertisement

Log in

What Do Cytokine Profiles Tell Us About Subsets of Juvenile Idiopathic Arthritis?

  • PEDIATRIC RHEUMATOLOGY (TJA LEHMAN, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Classification of juvenile idiopathic arthritis is an ongoing process and up to now has been predominantly based on clinical manifestations—mainly number of joints at onset of disease. In the meantime, basic studies have advanced our knowledge regarding the disease pathogenesis. Unfortunately, studies of cytokines and cytokine polymorphisms have not followed the predominantly clinical International League of Associations for Rheumatology classification in that no significant biological differences among the different disease categories have been demonstrated with robust associations. Only systemic-onset disease seems to be quite different from other disease categories with regard to biologic mechanisms; indeed, it now seems closer to autoinflammatory than to classic autoimmune diseases. New players in the immunologic basis of juvenile idiopathic arthritis (eg, interleukin-17 and regulatory T cells) are also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Quartier P, Allantaz F, Cimaz R, et al.: A multicentre, randomised, double-blind, placebo-controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis 2011, 70:747–54. This was the first placebo-controlled trial of anakinra in SoJIA.

    Article  PubMed  CAS  Google Scholar 

  2. Pascual V, Allantaz F, Arce E, et al. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201:1479–86.

    Article  PubMed  CAS  Google Scholar 

  3. Allantaz F, Chaussabel D, Stichweh D, et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J Exp Med. 2007;204:2131–44.

    Article  PubMed  CAS  Google Scholar 

  4. Nigrovic PA, Mannion M, Prince FH, et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 2011;63:545–55.

    Article  PubMed  CAS  Google Scholar 

  5. Yokota S, Imagawa T, Mori M, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371:998–1006.

    Article  PubMed  CAS  Google Scholar 

  6. Maeno N, Takei S, Nomura Y, et al. Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima et al. Arthritis Rheum. 2002;46:2539–41.

    Article  PubMed  Google Scholar 

  7. Lotito AP, Campa A, Silva CA, et al. Interleukin 18 as a marker of disease activity and severity in patients with juvenile idiopathic arthritis. J Rheumatol. 2007;34:823–30.

    PubMed  CAS  Google Scholar 

  8. Jelusić M, Lukić IK, Tambić-Bukovac L, et al. Interleukin-18 as a mediator of systemic juvenile idiopathic arthritis. Clin Rheumatol. 2007;26:1332–4.

    Article  PubMed  Google Scholar 

  9. Shimizu M, Yokoyama T, Yamada K, et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology (Oxford). 2010;49:1645–53.

    Article  CAS  Google Scholar 

  10. De Jager W, Vastert SJ, Beekman JM, et al. Defective phosphorylation of interleukin-18 receptor beta causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60:2782–93.

    Article  PubMed  Google Scholar 

  11. Mörmann M, Rieth H, Hua TD, et al. Mosaics of gene variations in the interleukin-10 gene promoter affect interleukin-10 production depending on the stimulation used. Genes Immun. 2004;5:246–55.

    Article  PubMed  Google Scholar 

  12. Fife MS, Gutierrez A, Ogilvie EM, et al. Novel IL10 gene family associations with systemic juvenile idiopathic arthritis. Arthritis Res Ther. 2006;8:R148.

    Article  PubMed  Google Scholar 

  13. Möller JC, Paul D, Ganser G, et al. IL10 promoter polymorphisms are associated with systemic onset juvenile idiopathic arthritis (SoJIA). Clin Exp Rheumatol. 2010;28:912–8.

    PubMed  Google Scholar 

  14. De Kleer IM, Wedderburn LR, Taams LS, et al. CD4 + CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol. 2004;172:6435–43.

    PubMed  Google Scholar 

  15. Nistala K, Wedderburn LR. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford). 2009;48:602–6.

    Article  CAS  Google Scholar 

  16. Nistala K, Moncrieffe H, Newton KR, et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 2008;58:875–87.

    Article  PubMed  Google Scholar 

  17. Olivito B, Simonini G, Ciullini S, et al. Th17 transcription factor RORC2 is inversely correlated with FOXP3 expression in the joints of children with juvenile idiopathic arthritis. J Rheumatol. 2009;36:2017–24.

    Article  PubMed  CAS  Google Scholar 

  18. • Cosmi L, Cimaz R, Maggi L, et al.: Evidence of the transient nature of the Th17 phenotype of CD4 + CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum 2011, 63:2504–15. CD161 is a marker of Th17 cells, which are present in the SF but can convert to Th1 under appropriate circumstances.

    Article  PubMed  CAS  Google Scholar 

  19. • Nistala K, Adams S, Cambrook H, et al.: Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A 2010, 107:14751–6. Similar finding as in Cosmi et al. [18•] above, as the clonotypic identity of some Th1 and Th17 cells was also demonstrated.

    Article  PubMed  CAS  Google Scholar 

  20. Van den Ham HJ, de Jager W, Bijlsma JW, et al. Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology (Oxford). 2009;48:899–905.

    Article  Google Scholar 

  21. • Barnes MG, Grom AA, Thompson SD, et al. Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum. 2010;62:3249–58. This gene expression study shows that not only number of joints, but other parameters (here, age at onset) can be used to classify JIA.

    Article  PubMed  Google Scholar 

  22. Griffin TA, Barnes MG, Ilowite NT, et al. Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. Arthritis Rheum. 2009;60:2113–23.

    Article  PubMed  CAS  Google Scholar 

  23. Barnes MG, Grom AA, Thompson SD, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60:2102–12.

    Article  PubMed  CAS  Google Scholar 

  24. Hunter PJ, Nistala K, Jina N, et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 2010;62:896–907.

    Article  PubMed  CAS  Google Scholar 

  25. Macaubas C, Nguyen K, Milojevic D, et al. Oligoarticular and polyarticular JIA: epidemiology and pathogenesis. Nat Rev Rheumatol. 2009;5:616–26.

    Article  PubMed  Google Scholar 

  26. Mellins ED, Macaubas C, Grom AA. Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nat Rev Rheumatol. 2011;7:416–26.

    Article  PubMed  CAS  Google Scholar 

  27. Lin YT, Wang CT, Gershwin ME, Chiang BL. The pathogenesis of oligoarticular/polyarticular vs systemic juvenile idiopathic arthritis. Autoimmun Rev. 2011;10:482–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Cimaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimaz, R., Moretti, D., Pagnini, I. et al. What Do Cytokine Profiles Tell Us About Subsets of Juvenile Idiopathic Arthritis?. Curr Rheumatol Rep 14, 150–154 (2012). https://doi.org/10.1007/s11926-011-0233-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-011-0233-3

Keywords

Navigation