Skip to main content
Log in

Update on pathogenic mechanisms of systemic necrotizing vasculitis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Systemic necrotizing vasculitis is rare but can have serious sequelae. Despite recent advances in cellular and molecular immunology and genetics, the causes of vasculitic syndromes remain largely undefined. Although mechanisms of blood vessel damage in systemic necrotizing vasculitis are complex, recent studies have provided significant insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ball GV, Bridges S Jr: Classification of vasculitic syndromes. In Vasculitis. Edited by Ball GV, Bridges S Jr. New York: Oxford University Press; 2008:3–6.

    Google Scholar 

  2. Ball GV, Bridges S Jr: Pathogenesis of vasculitis. In Vasculitis, edn 2. Edited by Ball GV, Bridges S Jr. New York: Oxford University Press; 2008:67–88.

    Google Scholar 

  3. Gocke DJ, Hsu K, Morgan C, et al.: Association between polyarteritis and Australia antigen. Lancet 1970, 2:1149–1153.

    Article  PubMed  CAS  Google Scholar 

  4. Trepo CG, Zuckerman AJ, Bird RC, Prince AM: The role of circulating hepatitis B antigen/antibody immune complexes in the pathogenesis of vascular and hepatic manifestations in polyarteritis nodosa. J Clin Pathol 1974, 27:863–868.

    Article  PubMed  CAS  Google Scholar 

  5. Gower RG, Sausker WF, Kohler PF, et al.: Small vessel vasculitis caused by hepatitis B virus immune complexes. Small vessel vasculitis and HBsAG. J Allergy Clin Immunol 1978, 62:222–228.

    Article  PubMed  CAS  Google Scholar 

  6. Tsukada N, Koh CS, Owa M, Yanagisawa N: Chronic neuropathy associated with immune complexes of hepatitis B virus. J Neurol Sci 1983, 61:193–210.

    Article  PubMed  CAS  Google Scholar 

  7. Agnello V, Chung RT, Kaplan LM: A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 1992, 327:1490–1495.

    PubMed  CAS  Google Scholar 

  8. McCluskey RT, Fienberg R: Vasculitis in primary vasculitides, granulomatoses, and connective tissue diseases. Hum Pathol 1983, 14:305–315.

    Article  PubMed  CAS  Google Scholar 

  9. Cochrane CG: Mechanisms involved in the deposition of immune complexes in tissues. J Exp Med 1971, 134:75s–89s.

    Article  PubMed  CAS  Google Scholar 

  10. Gower RG, Sams WM Jr, Thorne EG, et al.: Leukocytoclastic vasculitis: sequential appearance of immunoreactants and cellular changes in serial biopsies. J Invest Dermatol 1977, 69:477–484.

    Article  PubMed  CAS  Google Scholar 

  11. Nishimura M, Mitsunaga S, Ishikawa Y, Satake M: Activation of polymorphonuclear neutrophils by immune complex: possible involvement in development of transfusion-related acute lung injury. Transfus Med 2004, 14:359–367.

    Article  PubMed  CAS  Google Scholar 

  12. Sindrilaru A, Seeliger S, Emrchen JM, et al.: Site of blood vessel damage and relevance of CD18 in a murine model of immune complex-mediated vasculitis. J Invest Dermatol 2007, 127:447–454.

    Article  PubMed  CAS  Google Scholar 

  13. Clynes R, Dumitru C, Ravetch JV: Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998, 279:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  14. Coxon A, Cullere X, Knight S, et al.: Fc gamma RIII mediates neutrophil recruitment to immune complexes. a mechanism for neutrophil accumulation in immunemediated inflammation. Immunity 2001, 14:693–704.

    Article  PubMed  CAS  Google Scholar 

  15. Trcka J, Moroi Y, Clynes RA, et al.: Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Immunity 2002, 16:861–868.

    Article  PubMed  CAS  Google Scholar 

  16. Looney MR, Su X, Van Ziffle JA, et al.: Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury. J Clin Invest 2006, 116:1615–1623.

    Article  PubMed  CAS  Google Scholar 

  17. Utomo A, Hirahashi J, Mekala D, et al.: Requirement for Vav proteins in post-recruitment neutrophil cytotoxicity in IgG but not complement C3-dependent injury. J Immunol 2008, 180:6279–6287.

    PubMed  CAS  Google Scholar 

  18. Wiik A: Autoantibodies in vasculitis. In Vasculitis, edn 2. Edited by Ball GV, Bridges S Jr. New York: Oxford University Press; 2008:53–66.

    Google Scholar 

  19. Erdbrügger U, Hellmark T, Bunch DO, et al.: Mapping of myeloperoxidase epitopes recognized by MPO-ANCA using human-mouse MPO chimers. Kidney Int 2006, 69:1799–1805.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki K, Kobayashi S, Yamazaki K, et al.: Analysis of risk epitopes of anti-neutrophil antibody MPO-ANCA in vasculitis in Japanese population. Microbiol Immunol 2007, 51:1215–1220.

    PubMed  CAS  Google Scholar 

  21. Bansal PJ, Tobin MC: Neonatal microscopic polyangiitis secondary to transfer of maternal myeloperoxidase-antineutrophil cytoplasmic antibody resulting in neonatal pulmonary hemorrhage and renal involvement. Ann Allergy Asthma Immunol 2004, 93:398–401.

    Article  PubMed  Google Scholar 

  22. Schreiber A, Xiao H, Falk RJ, Jennette JC: Bone marrowderived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J Am Soc Nephrol 2006, 17:3355–3364.

    Article  PubMed  Google Scholar 

  23. Xiao H, Heeringa P, Hu P, et al.: Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 2002, 110:955–963.

    PubMed  CAS  Google Scholar 

  24. Hoshino A, Nagao T, Ito-Ihara T, et al.: Trafficking of QDconjugated MPO-ANCA in murine systemic vasculitis and glomerulonephritis model mice. Microbiol Immunol 2007, 51:551–566.

    PubMed  CAS  Google Scholar 

  25. Nolan SL, Kalia N, Nash GB, et al.: Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J Am Soc Nephrol 2008, 19:973–984.

    Article  PubMed  CAS  Google Scholar 

  26. Guilpain P, Servettaz R, Goulvestre C, et al.: Pathogenic effects of antimyeloperoxidase antibodies in patients with microscopic polyangiitis. Arthritis Rheum 2007, 56:2455–2463.

    Article  PubMed  CAS  Google Scholar 

  27. Bunch DO, Silver JS, Majure MC, et al.: Maintenance of tolerance by regulation of anti-myeloperoxidase B cells. J Am Soc Nephrol 2008 (in press).

  28. Xiao H, Schreiber A, Heeringa P, et al.: Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol 2007, 170:52–64.

    Article  PubMed  CAS  Google Scholar 

  29. Wiesner O, Litwiller RD, Hummel AM, et al.: Differences between human proteinase 3 and neutrophil elastase and their murine homologues are relevant for murine model experiments. FEBS Lett 2005, 579:5305–5312.

    Article  PubMed  CAS  Google Scholar 

  30. Tomer Y, Gilburd B, Blank M, et al.: Characterization of biologically active antineutrophil cytoplasmic antibodies induced in mice. Pathogenetic role in experimental vasculitis. Arthritis Rheum 1995, 38:1375–1381.

    Article  PubMed  CAS  Google Scholar 

  31. van der Geld YM, Hellmark T, Selga D, et al.: Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes. Ann Rheum Dis 2007, 66:1679–1682.

    Article  PubMed  Google Scholar 

  32. Kantari C, Pederzoli-Ribeil M, Amir-Moazami O, et al.: Proteinase 3, the Wegener autoantigen, is externalized during neutrophil apoptosis: evidence for a functional association with phospholipid scramblase 1 and interference with macrophage phagocytosis. Blood 2007, 110:4086–4095.

    Article  PubMed  CAS  Google Scholar 

  33. Brachemi S, Mambole A, Fakhouri F, et al.: Increased membrane expression of proteinase 3 during neutrophil adhesion in the presence of anti proteinase 3 antibodies. J Am Soc Nephrol 2007, 18:2330–2339.

    Article  PubMed  CAS  Google Scholar 

  34. von Vietinghoff S, Tunnemann G, Eulenberg C, et al.: NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood 2007, 109:4487–4493.

    Article  CAS  Google Scholar 

  35. von Vietinghoff S, Eulenberg C, Wellner M, et al.: Neutrophil surface presentation of the anti-neutrophil cytoplasmic antibody-antigen proteinase 3 depends on N-terminal processing. Clin Exp Immunol 2008, 152:508–516.

    Article  CAS  Google Scholar 

  36. Uehara A, Sugawara Y, Sasano T, et al.: Proinflammatory cytokines induce proteinase 3 as membrane-bound and secretory forms in human oral epithelial cells and antibodies to proteinase 3 activate the cells through protease-activated receptor-2. J Immunol 2004, 173:4179–4189.

    PubMed  CAS  Google Scholar 

  37. Uehara A, Hirabayashi Y, Takada H: Antibodies to proteinase 3 prime human oral, lung, and kidney epithelial cells to secrete proinflammatory cytokines upon stimulation with agonists to various Toll-like receptors, NOD1, and NOD2. Clin Vaccine Immunol 2008, 15:1060–1066.

    Article  PubMed  CAS  Google Scholar 

  38. Pagnoux C, Guilpain P, Guillevin L: Churg-Strauss syndrome. Curr Opin Rheumatol 2007, 19:25–32.

    Article  PubMed  Google Scholar 

  39. Conrad DF, Jakobsson M, Coop G, et al.: A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 2006, 38:1251–1260.

    Article  PubMed  CAS  Google Scholar 

  40. Fauci AS, Haynes B, Katz P: The spectrum of vasculitis: clinical, pathologic, immunologic and therapeutic considerations. Ann Intern Med 1978, 89:660–676.

    PubMed  CAS  Google Scholar 

  41. Rasmussen N, Petersen J, Ralfkiaer, et al.: Spontaneous and induced immunoglobulin synthesis and anti-neutrophil cytoplasm antibodies in Wegener’s granulomatosis: relation to leukocyte subpopulations in blood and active lesions. Rheumatol Int 1988, 8:153–158.

    Article  PubMed  CAS  Google Scholar 

  42. Popa ER, Stegeman CA, Bos NA, et al.: Differential B- and T-cell activation in Wegener’s granulomatosis. J Allergy Clin Immunol 1999, 103:885–894.

    Article  PubMed  CAS  Google Scholar 

  43. Kallenberg CG, Tervaert JW, van der Woude FJ, et al.: Autoimmunity to lysosomal enzymes: new clues to vasculitis and glomerulonephritis? Immunol Today 1991, 12:61–64.

    Article  PubMed  CAS  Google Scholar 

  44. Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CGM: Persistent expansion of CD4+ effector memory T cells in Wegener’s granulomatosis. Kidney Int 2006, 70:938–947.

    Article  PubMed  CAS  Google Scholar 

  45. Abdulahad WH, van der Geld YM, Stegeman CA, et al.: Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 2007, 56:2080–2091.

    Article  PubMed  CAS  Google Scholar 

  46. Saito H, Tsurikisawa N, Tsuburai T, Akiyama K: Involvement of regulatory T cells in the pathogenesis of Churg-Strauss syndrome. Int Arch Allergy Immunol 2008, 146(Suppl 1):73–76.

    Article  PubMed  CAS  Google Scholar 

  47. Han JW, Shimada K, Ma-Krupa W, et al.: Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ Res 2008, 102:546–553.

    Article  PubMed  CAS  Google Scholar 

  48. Muller A, Trabandt A, Gloeckner-Hofmann K, et al.: Localized Wegener’s granulomatosis: predominance of CD26 and IFN-gamma expression. J Pathol 2000, 192:113–1

    Article  PubMed  CAS  Google Scholar 

  49. Balding CE, Howie AJ, Drake-Lee AB, Savage COS: Th2 dominance in nasal mucosa in patients with Wegener’s granulomatosis. Clin Exp Immunol 2001, 125:332–339.

    Article  PubMed  CAS  Google Scholar 

  50. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H: Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001 19:423–474.

    Article  PubMed  CAS  Google Scholar 

  51. Hultgren O, Andersson B, Hahn-Zoric M, Almroth G: Serum concentration of interleukin-18 is up-regulated in patients with ANCA-associated vasculitis. Autoimmunity 2007, 40:529–531.

    Article  PubMed  CAS  Google Scholar 

  52. Novick D, Elbirt D, Dinarello CA, et al.: Interleukin-18 Binding Protein in the Sera of Patients with Wegener’s Granulomatosis. J Clin Immunol 2008 (in press).

  53. Abdulahad WH, Stegeman CA, Limburg PC, Kallenberg CG: Skewed distribution of Th17 lymphocytes in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 2008, 58:2196–2205.

    Article  PubMed  Google Scholar 

  54. Tse WY, Abadeh S, Jefferis R, et al.: Neutrophil Fc gamma RIIIb allelic polymorphism in anti-neutrophil cytoplasmic antibody (ANCA)-positive systemic vasculitis. Clin Exp Immunol 2000, 119:574–577.

    Article  PubMed  CAS  Google Scholar 

  55. Jagiello P, Gencik M, Arning L, et al.: New genomic region for Wegener’s granulomatosis as revealed by an extended association screen with 202 apoptosis-related genes. Hum Genet 2004, 114:468–477.

    Article  PubMed  CAS  Google Scholar 

  56. Heckmann M, Holle JU, Arning L, et al.: The Wegener’s granulomatosis quantitative trait locus on chromosome 6p21.3 as characterised by tag SNP genotyping. Ann Rheum Dis 2008, 67:972–979.

    Article  PubMed  CAS  Google Scholar 

  57. Wieczorek S, Hellmich B, Arning L, et al.: Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg- Strauss syndrome, but not with Wegener’s granulomatosis. Arthritis Rheum 2008, 58:1839–1848.

    Article  PubMed  CAS  Google Scholar 

  58. Slot MC, Sokolowska MG, Savelkouis KG, et al.: Immunoregulatory gene polymorphisms are associated with ANCA-related vasculitis. Clin Immunol 2008, 128:39–45.

    Article  PubMed  CAS  Google Scholar 

  59. Sahin N, Aksu K, Kamali S, et al.: PTPN22 gene polymorphism in Takayasu’s arteritis. Rheumatology (Oxford) 2008, 47:634–635.

    Article  CAS  Google Scholar 

  60. Orozco G, Miranda-Filloy JA, Martin J, Gonzalez-Gay MA: Lack of association of a functional single nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with susceptibility to Henoch-Schonlein purpura. Clin Exp Rheumatol 2007 25:750–753.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Louis Bridges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danila, M.I., Louis Bridges, S. Update on pathogenic mechanisms of systemic necrotizing vasculitis. Curr Rheumatol Rep 10, 430–435 (2008). https://doi.org/10.1007/s11926-008-0070-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0070-1

Keywords

Navigation