Skip to main content

Advertisement

Log in

Scleroderma gene expression and pathway signatures

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Gene expression studies in scleroderma have shown large and consistent changes in the gene expression of end-target tissues. These changes reflect the lymphocyte infiltration and pathway deregulation potentially linked to disease pathogenesis. Gene expression in scleroderma also reflects the clinical heterogeneity in the disease and can be used to categorize patients. Contained within these gene expression signatures are groups of genes that could serve as biomarkers for clinical end points and disease activity. The use of mechanism-derived gene expression signatures in scleroderma will provide a better understanding of the deregulated pathways contributing to disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Glas AM, Floore A, Delahaye LJ, et al.: Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006, 7:278.

    Article  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, et al.: Molecular portraits of human breast tumours. Nature (London) 2000, 406:747–752.

    Article  CAS  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001, 98:10869–10874.

    Article  PubMed  CAS  Google Scholar 

  4. Garber ME, Troyanskaya OG, Schluens K, et al.: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A 2001, 98:13784–13789.

    Article  PubMed  CAS  Google Scholar 

  5. Troester MA, Hoadley KA, Sorlie T, et al.: Cell-typespecific responses to chemotherapeutics in breast cancer. Cancer Res 2004, 64:4218–4226.

    Article  PubMed  CAS  Google Scholar 

  6. Whitfield ML, Finlay DR, Murray JI, et al.: Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 2003, 100:12319–12324.

    Article  PubMed  CAS  Google Scholar 

  7. Gardner H, Shearstone JR, Bandaru R, et al.: Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum 2006, 54:1961–1973.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou X, Tan FK, Xiong M, et al.: Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum 2005, 52:3305–3314.

    Article  PubMed  CAS  Google Scholar 

  9. Leask A: Transcriptional profiling of the scleroderma fibroblast reveals a potential role for connective tissue growth factor (CTGF) in pathological fibrosis. Keio J Med 2004, 53:74–77.

    Article  PubMed  CAS  Google Scholar 

  10. Leask A, Abraham DJ, Finlay DR, et al.: Dysregulation of transforming growth factor beta signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum 2002, 46:1857–1865.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou X, Tan FK, Xiong M, et al.: Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol 2001, 167:7126–7133.

    PubMed  CAS  Google Scholar 

  12. Luzina IG, Atamas SP, Wise R, et al.: Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum 2003, 48:2262–2274.

    Article  PubMed  CAS  Google Scholar 

  13. Luzina IG, Atamas SP, Wise R, et al.: Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol 2002, 26:549–557.

    PubMed  CAS  Google Scholar 

  14. Tan FK, Zhou X, Mayes MD, et al.: Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford) 2006, 45:694–702.

    Article  CAS  Google Scholar 

  15. Steen VD, Medsger Jr TA: Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum 2001, 44:2828–2835.

    Article  PubMed  CAS  Google Scholar 

  16. Valdes JJ, Barton AJ: Computational intelligence techniques: a study of scleroderma skin disease. Proceedings of The Genetic and Evolutionary Computation Conference (GECCO) 2007. Ottawa, ON: National Research Council Canada; 2007:2580–2587.

    Google Scholar 

  17. Renzoni EA, Abraham DJ, Howat S, et al.: Gene expression profiling reveals novel TGFbeta targets in adult lung fibroblasts. Respir Res 2004, 5:24.

    Article  PubMed  Google Scholar 

  18. Fan C, Oh DS, Wessels L, et al.: Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006, 355:560–569.

    Article  PubMed  CAS  Google Scholar 

  19. Steen VD, Conte C, Owens GR, Medsger Jr TA: Severe restrictive lung disease in systemic sclerosis. Arthritis Rheum 1994, 37:1283–1289.

    Article  PubMed  CAS  Google Scholar 

  20. Rottoli P, Magi B, Perari MG, et al.: Cytokine profile and proteome analysis in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 2005, 5:1423–1430.

    Article  PubMed  CAS  Google Scholar 

  21. Broekelmann TJ, Limper AH, Colby TV, McDonald JA: Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A 1991, 88:6642–6646.

    Article  PubMed  CAS  Google Scholar 

  22. Corrin B, Butcher D, McAnulty BJ, et al.: Immunohistochemical localization of transforming growth factor-beta 1in the lungs of patients with systemic sclerosis, cryptogenic fibrosing alveolitis and other lung disorders. Histopathology 1994, 24:145–150.

    Article  PubMed  CAS  Google Scholar 

  23. Silver RM, Miller KS, Kinsella MB, et al.: Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am J Med 1990, 88:470–476.

    Article  PubMed  CAS  Google Scholar 

  24. Yurovsky VV, Wigley FM, Wise RA, White B: Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol 1996, 48:84–97.

    Article  PubMed  CAS  Google Scholar 

  25. White B, Moore WC, Wigley FM, et al.: Cyclophosphamide is associated with pulmonary function and survival benefit in patients with scleroderma and alveolitis. Ann Intern Med 2000, 132:947–954.

    PubMed  CAS  Google Scholar 

  26. Ragno S, Romano M, Howell S, et al.: Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 2001, 104:99–108.

    Article  PubMed  CAS  Google Scholar 

  27. Kodelja V, Muller C, Politz O, et al.: Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern. J Immunol 1998, 160:1411–1418.

    PubMed  CAS  Google Scholar 

  28. Hieshima K, Imai T, Baba M, et al.: A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol 1997, 159:1140–1149.

    PubMed  CAS  Google Scholar 

  29. Bott CM, Doshi JB, Morimoto C, et al.: Activation of human T cells through CD6: functional effects of a novel anti-CD6 monoclonal antibody and definition of four epitopes of the CD6 glycoprotein. Int Immunol 1993, 5:783–792.

    Article  PubMed  CAS  Google Scholar 

  30. Morel Y, Schiano de Colella JM, Harrop J, et al.: Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol 2000, 165:4397–4404.

    PubMed  CAS  Google Scholar 

  31. Vukmanovic-Stejic M, Vyas B, Gorak-Stolinska P, et al.: Human Tc1 and Tc2/Tc0 CD8 T-cell clones display distinct cell surface and functional phenotypes. Blood 2000, 95:231–240.

    PubMed  CAS  Google Scholar 

  32. Robertson G, Hirst M, Bainbridge M, et al.: Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 2007, 4:651–657.

    Article  PubMed  CAS  Google Scholar 

  33. Baechler EC, Batliwalla FM, Karypis G, et al.: Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003, 100:2610–2615.

    Article  PubMed  CAS  Google Scholar 

  34. Maas K, Chan S, Parker J, et al.: Cutting edge: molecular portrait of human autoimmune disease. J Immunol 2002, 169:5–9.

    PubMed  CAS  Google Scholar 

  35. Mandel M, Gurevich M, Pauzner R, et al.: Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 2004, 138:164–170.

    Article  PubMed  CAS  Google Scholar 

  36. Mootha VK, Lindgren CM, Eriksson KF, et al.: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34:267–273.

    Article  PubMed  CAS  Google Scholar 

  37. Subramanian A, Tamayo P, Mootha VK, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545–15550.

    Article  PubMed  CAS  Google Scholar 

  38. Segal E, Shapira M, Regev A, et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166–176.

    Article  PubMed  CAS  Google Scholar 

  39. Liu ET: Mechanism-derived gene expression signatures and predictive biomarkers in clinical oncology. Proc Natl Acad Sci U S A 2005, 102:3531–3532.

    Article  PubMed  CAS  Google Scholar 

  40. Whitfield ML, Sherlock G, Saldanha AJ, et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002, 13:1977–2000.

    Article  PubMed  CAS  Google Scholar 

  41. Whitfield ML, George LK, Grant GD, Perou CM: Common markers of proliferation. Nat Rev Cancer 2006, 6:99–106.

    Article  PubMed  CAS  Google Scholar 

  42. Chang HY, Sneddon JB, Alizadeh AA, et al.: Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2004, 2:E7.

    Article  PubMed  Google Scholar 

  43. Chang HY, Nuyten DS, Sneddon JB, et al.: Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 2005, 102:3738–3743.

    Article  PubMed  CAS  Google Scholar 

  44. Pannu J, Gardner H, Shearstone JR, et al.: Increased levels of transforming growth factor beta receptor type I and up-regulation of matrix gene program: A model of scleroderma. Arthritis Rheum 2006, 54:3011–3021.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Whitfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, J.L., Milano, A., Kari Connolly, M. et al. Scleroderma gene expression and pathway signatures. Curr Rheumatol Rep 10, 205–211 (2008). https://doi.org/10.1007/s11926-008-0034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0034-5

Keywords

Navigation