Skip to main content

Advertisement

Log in

Transforming growth factor-β: Recent advances on its role in immune tolerance

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) is a key regulator of immune tolerance. In this paper, we will focus on T cells and natural killer (NK) cells, which are directly regulated by TGF-β in vivo. TGF-β controls T-cell activation and differentiation, and is involved in the suppressive function and generation of regulatory T cells. Recently, TGF-β has also been shown to directly inhibit NK cell activity. These studies demonstrate that TGF-β utilizes multiple mechanisms to ensure immune tolerance, which is critical in a variety of autoimmune and inflammatory disorders. We will also discuss recent advances on the role of TGF-β in immune-mediated diabetes, inflammatory bowel disease, arthritis, and systemic lupus erythematosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chang H, Brown CW, Matzuk MM: Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 2002, 23:787–823.

    Article  PubMed  CAS  Google Scholar 

  2. Govinden R, Bhoola KD: Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003, 98:257–265.

    Article  PubMed  CAS  Google Scholar 

  3. Li MO, Wan YY, Sanjabi S, et al.: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006, In press.

  4. Shull,MM, Ormsby,I, Kier,AB, et al.: Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992, 359:693–639.

    Article  PubMed  CAS  Google Scholar 

  5. Kulkarni,AB, Huh,CG, Becker,D, et al.: Transforming growth factor beta 1 null mutation in mice causes excessive inf lammator y response and early death. Proc Natl Acad Sci U S A 1993, 90:770–774.

    Article  PubMed  CAS  Google Scholar 

  6. Dang,H, Geiser,AG, Letterio,JJ, et al.: SLE-like autoantibodies and Sjogren’s syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol 1995, 155:3205–3212.

    PubMed  CAS  Google Scholar 

  7. Yaswen,L, Kulkarni,AB, Fredrickson,T, et al.: Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse. Blood 1996, 87:1439–1445.

    PubMed  CAS  Google Scholar 

  8. Letterio,JJ, Geiser,AG, Kulkarni,AB, et al.: Autoimmunity associated with TGF-beta1-deflciency in mice is dependent on MHC class II antigen expression. J Clin Invest 1996, 98:2109–2119.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi,S, Yoshida,K, Ward,JM, et al.: Beta 2-microglobulin- de.cient background ameliorates lethal phenotype of the TGF-beta 1 null mouse. J Immunol 1999, 163:4013–4019.

    PubMed  CAS  Google Scholar 

  10. Gorelik,L, Flavell,RA: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000, 12:171–81. Together with Lucas et al. [11], these studies demonstrate that TGF-β directly regulates T cell tolerance and homeostasis in vivo.

    Article  PubMed  CAS  Google Scholar 

  11. Lucas,PJ, Kim,SJ, Melby,SJ, Gress,RE: Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 2000, 191:1187–1196. Together with Gorelik et al. [10], these studies demonstrate that TGF-γ directly regulates T cell tolerance and homeostasis in vivo.

    Article  PubMed  CAS  Google Scholar 

  12. Leveen,P, Larsson,J, Ehinger,M, et al.: Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 2002, 100:560–568.

    Article  PubMed  CAS  Google Scholar 

  13. Chytil,A, Magnuson,MA, Wright,CV, Moses,HL: Conditional inactivation of the TGF-beta type II receptor using Cre: Lox. Genesis 2002, 32:73–75.

    Article  PubMed  CAS  Google Scholar 

  14. Gorelik,L, Flavell,RA: Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2002, 2:46–53.

    Article  PubMed  CAS  Google Scholar 

  15. Gorelik,L, Fields,PE, Flavell,RA: Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 2000, 165:4773–4777.

    PubMed  CAS  Google Scholar 

  16. Heath,VL, Murphy,EE, Crain,C, et al.: TGF-beta1 downregulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 2000, 30:2639–2649.

    Article  PubMed  CAS  Google Scholar 

  17. Chen,CH, Seguin-Devaux,C, Burke,NA, et al.: Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J Exp Med 2003, 197:1689–1699. This study demonstrates that TGF-β interferes with TCR/CD28 signaling to inhibit T cell differentiation in CD4+ T cells.

    Article  PubMed  CAS  Google Scholar 

  18. Gorelik,L, Constant,S, Flavell,R A: Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 2002, 195:1499–1505.

    Article  PubMed  CAS  Google Scholar 

  19. Lin,JT, Martin,SL, Xia,L, Gorham,JD: TGF-beta1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J Immunol 2005, 174:5950–5958.

    PubMed  CAS  Google Scholar 

  20. Thomas,DA, Massague,J: TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005, 8:369–380. This study reveals that the TGF-β/Smad pathway inhibits cytotoxic gene expression through direct promoter suppression in CD8+ T cells.

    Article  PubMed  CAS  Google Scholar 

  21. Sakaguchi,S, Sakaguchi,N, Asano,M, et al.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155:1151–1164.

    PubMed  CAS  Google Scholar 

  22. Shevach,EM: CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002, 2:389–400.

    PubMed  CAS  Google Scholar 

  23. Fontenot,JD, Rasmussen,JP, Williams,LM, et al.: Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005, 22:329–341. This study provided the definitive genetic evidence that transcription factor FoxP3 controls the physiology of regulatory T cells.

    Article  PubMed  CAS  Google Scholar 

  24. Sakaguchi,S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005, 6:345–352.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz,RH: Natural regulatory T cells and self-tolerance. Nat Immunol 2005, 6:327–330.

    Article  PubMed  CAS  Google Scholar 

  26. von Boehmer,H: Mechanisms of suppression by suppressor T cells. Nat Immunol 2005, 6:338–344.

    Article  CAS  Google Scholar 

  27. Fantini,MC, Becker,C, Monteleone,G, et al.: Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004, 172:5149–5153.

    PubMed  CAS  Google Scholar 

  28. Nakamura,K, Kitani,A, Strober,W: Cell contactdependent immunosuppression by CD4(+)CD25(+) regulator y T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001, 194:629–644.

    Article  PubMed  CAS  Google Scholar 

  29. Piccirillo,CA, Letterio,JJ, Thornton,AM, et al.:CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 2002, 196:237–246.

    Article  PubMed  CAS  Google Scholar 

  30. Powrie,F, Carlino,J, Leach,MW, et al.: A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996, 183:2669–2774.

    Article  PubMed  CAS  Google Scholar 

  31. Kullberg,MC, Hay,V, Cheever,AW, et al.: TGF-beta1 production by CD4+ CD25+ regulatory T cells is not essential for suppression of intestinal in.ammation. Eur J Immunol 2005, 35:2886–2895.

    Article  PubMed  CAS  Google Scholar 

  32. Mamura,M, Lee,W, Sullivan,TJ, et al.: CD28 disruption exacerbates in.ammation in Tgf-beta1-/-mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-beta1. Blood 2004, 103:4594–4601.

    Article  PubMed  CAS  Google Scholar 

  33. Fahlen,L, Read,S, Gorelik,L, et al.: T cells that cannot respond to TGF-[beta] escape control by CD4+CD25+ regulatory T cells. J Exp Med 2005, 201:737–746.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura,K, Kitani,A, Fuss,I, et al.: TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 2004, 172:834–842.

    PubMed  CAS  Google Scholar 

  35. Horwitz,DA, Zheng,SG, Gray,JD: The role of the combination of IL-2 and TGF-beta or IL-10 in the generation and function of CD4+ CD25+ and CD8+ regulatory T cell subsets. J Leukoc Biol 2003, 74:471–478.

    Article  PubMed  CAS  Google Scholar 

  36. Roncarolo,MG, Bacchetta,R, Bordignon,C, et al.: Type 1 T regulator y cells. Immunol Rev 2001, 182:68–79.

    Article  PubMed  CAS  Google Scholar 

  37. Battaglia,M, Gianfrani,C, Gregori,S, Roncarolo,MG: IL-10- producing T regulatory type 1 cells and oral tolerance. Ann N Y Acad Sci 2004, 1029:142–153.

    Article  PubMed  CAS  Google Scholar 

  38. Levings,MK, Sangregorio,R, Sartirana,C, et al.: Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002, 196:1335–1346.

    Article  PubMed  CAS  Google Scholar 

  39. Zheng,SG, Wang,JH, Gray,JD, et al.: Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol 2004, 172:5213–5221.

    PubMed  CAS  Google Scholar 

  40. Zheng,SG, Gray,JD, Ohtsuka,K, et al.: Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol 2002, 169:4183–4189.

    PubMed  CAS  Google Scholar 

  41. Wan,YY, Flavell,RA: Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A 2005, 102:5126–5131. This study demonstrates that TGF-β is able to induce de novo FoxP3 expression and thus the generation of regulatory T cells.

    Article  PubMed  CAS  Google Scholar 

  42. Peng,Y, Laouar,Y, Li,MO, et al.: TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A 2004, 101:4572–4577.

    Article  PubMed  CAS  Google Scholar 

  43. Chen,W, Jin,W, Hardegen,N, et al.: Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003, 198:1875–1886.

    Article  PubMed  CAS  Google Scholar 

  44. Huber,S, Schramm,C, Lehr,HA, et al.: Cutting edge: TGFbeta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004, 173:6526–6531.

    PubMed  CAS  Google Scholar 

  45. Marie,JC, Letterio,JJ, Gavin,M, Rudensky,AY: TGF-ta1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med 2005, 201:1061–1067.

    Article  PubMed  CAS  Google Scholar 

  46. Lanier,LL: NK cell recognition. Annu Rev Immunol 2005, 23:225–274.

    Article  PubMed  CAS  Google Scholar 

  47. Laouar,Y, Sutterwala,FS, Gorelik,L, Flavell,RA: Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005, 6:600–607. This is the first study showing in vivo that TGF-β controls NK cell homeostasis and IFN-γ production.

    Article  PubMed  CAS  Google Scholar 

  48. Castriconi,R, Cantoni,C, Della,Chiesa M, et al.: Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci U S A 2003, 100:4120–4125.

    Article  PubMed  CAS  Google Scholar 

  49. Ghiringhelli,F, Menard,C, Terme,M, et al.: CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005, 202:1075–1085.

    Article  PubMed  CAS  Google Scholar 

  50. Esplugues,E, Sancho,D, Vega-Ramos,J, et al.: Enhanced antitumor immunity in mice deficient in CD69. J Exp Med 2003, 197:1093–1106. This is the first study to demonstrate a role for CD69 in negative regulation of immune responses in correlation with TGF-β expression.

    Article  PubMed  CAS  Google Scholar 

  51. Esplugues,E, Vega-Ramos,J, Cartoixa,D, et al.: Induction of tumor NK-cell immunity by anti-CD69 antibody therapy. Blood 2005, 105:4399–4406.

    Article  PubMed  CAS  Google Scholar 

  52. Gregg,RK, Jain,R, Schoenleber,SJ, et al.: A sudden decline in active membrane-bound TGF-beta impairs both T regulatory cell function and protection against autoimmune diabetes. J Immunol 2004, 173:7308–7316.

    PubMed  CAS  Google Scholar 

  53. Pop,SM, Wong,CP, Culton,DA, et al.: Single cell analysis shows decreasing FoxP3 and TGFbeta1 coexpressing CD4+CD25+ regulatory T cells during autoimmune diabetes. J Exp Med 2005, 201:1333–1346.

    Article  PubMed  CAS  Google Scholar 

  54. Belghith,M, Bluestone,JA, Barriot,S, et al.: TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 2003, 9:1202–1208. This study demonstrates for the.rst time that treatment of immunemediated diabetes with modi.ed anti-CD3 is TGF-β dependent.

    Article  PubMed  CAS  Google Scholar 

  55. Chatenoud,L: Anti-CD3 antibodies: towards clinical antigen-speci.c immunomodulation. Curr Opin Pharmacol 2004, 4:403–407.

    Article  PubMed  CAS  Google Scholar 

  56. Bisikirska,B, Colgan,J, Luban,J, et al.: TCR stimulation with modi.ed anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005, 115:2904–2913.

    Article  PubMed  CAS  Google Scholar 

  57. Herold,KC, Hagopian,W, Auger,JA, et al.: Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 2002, 346:1692–1698.

    Article  PubMed  CAS  Google Scholar 

  58. Fantini MC, Becker C, Tubbe I, et al.: TGF-ta induced Foxp3+ regulatory T cells suppress Th1-mediated experimental colitis. Gut 2005, In press.

  59. Monteleone,G, Kumberova,A, Croft,NM, et al.: Blocking Smad7 restores TGF-beta1 signaling in chronic inf lammator y bowel disease. J Clin Invest 2001, 108:601–609. This study shows that TGF-β signaling is inhibited at in.ammatory sites in in.ammatory bowel disease.

    Article  PubMed  CAS  Google Scholar 

  60. Sancho,D, Gomez,M, Viedma,F, et al.: CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J Clin Invest 2003, 112:872–882.

    Article  PubMed  CAS  Google Scholar 

  61. Schramm,C, Kriegsmann,J, Protschka,M, et al.: Susceptibility to collagen-induced arthritis is modulated by TGFbeta responsiveness of T cells. Arthritis Res Ther 2004, 6:R114-R119.

    Article  PubMed  CAS  Google Scholar 

  62. Kim,HY, Kim,HJ, Min,HS, et al.: NKT cells promote antibody-induced joint in.ammation by suppressing transforming growth factor beta1 production. J Exp Med 2005, 201:41–47.

    Article  PubMed  CAS  Google Scholar 

  63. Ohtsuka,K, Gray,JD, Stimmler,MM, et al.: Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol 1998, 160:2539–2545.

    PubMed  CAS  Google Scholar 

  64. Kang,HK, Michaels,MA, Berner,BR, Datta,SK: Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol 2005, 174:3247–3255.

    PubMed  CAS  Google Scholar 

  65. Kaliyaperumal,A, Mohan,C, Wu,W, Datta,SK: Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med 1996, 183:2459–2469.

    Article  PubMed  CAS  Google Scholar 

  66. Zheng,SG, Wang,JH, Koss,MN, et al.: CD4+ and CD8+ regulatory T cells generated ex vivo with IL-2 and TGF-beta suppress a stimulatory graft-versus-host disease with a lupus-like syndrome. J Immunol 2004, 172:1531–1539.

    PubMed  CAS  Google Scholar 

  67. Guo,H, Leung,JC, Chan,LY, et al.: Modulation of intrapulmonary TGF-beta expression by mycophenolate mofetil in lupus prone MRL/lpr mice. Lupus 2005, 14:583–592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Flavell PhD, FRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriegel, M.A., Li, M.O., Sanjabi, S. et al. Transforming growth factor-β: Recent advances on its role in immune tolerance. Curr Rheumatol Rep 8, 138–144 (2006). https://doi.org/10.1007/s11926-006-0054-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-006-0054-y

Keywords

Navigation