Skip to main content
Log in

Experimental spondyloarthropathies: Animal models of ankylosing spondylitis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Spondyloarthropathies (SpAs), including ankylosing spondylitis, are chronic inflammatory diseases of the axial skeleton. Genomic scans of SpA families revealed the overwhelming complexity of the disease, which appears to be under the control of over 20 chromosome loci, including the major SpA gene HLA-B27 within class I of the major histocompatibility complex (MHC). Animal models confirmed the primary role of MHC in SpA susceptibility and supported the hypothesis that certain enterobacterial infections can trigger SpA. Immunization of mice with proteoglycan aggrecan also can provoke SpA, thus providing the opportunity to study genetic and clinical details of the disease initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Brewerton DA, Hart FD, Nicholls A, et al.: Ankylosing spondylitis and HL-A 27. Lancet 1973, 1:904–907.

    Article  PubMed  CAS  Google Scholar 

  2. Khan MA: Update on spondyloarthropathies. Ann Intern Med 2002, 136:896–907. This is an excellent review of all aspects of SpA in human population: epidemiology, diagnostic criteria, and allied diseases such AS and reactive, psoriatic, and enteropathic arthritides. Genetic aspects, clinical management, and anti-tumor necrosis factor-α therapies are discussed as well.

    PubMed  Google Scholar 

  3. Braun J, Bollow M, Remlinger G, et al.: Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 1998, 41:58–67.

    Article  PubMed  CAS  Google Scholar 

  4. Nickerson CL, Luthra HS, Savarirayan S, et al.: Susceptibility of HLA-B27 transgenic mice to Yersinia enterocolitica infection. Hum Immunol 1990, 28:382–396.

    Article  PubMed  CAS  Google Scholar 

  5. van der Linden S, Valkenburg HA, Cats A: Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 1984, 27:361–368.

    Article  PubMed  Google Scholar 

  6. Kim TH, Stone M, Payne U, et al.: Cartilage biomarkers in ankylosing spondylitis: relationship to clinical variables and treatment response. Arthritis Rheum 2005, 52:885–891.

    Article  PubMed  CAS  Google Scholar 

  7. Brown MA, Pile KD, Kennedy LG, et al.: A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998, 41:588–595.

    Article  PubMed  CAS  Google Scholar 

  8. Rubin LA, Amos CI, Wade JA, et al.: Investigating the genetic basis for ankylosing spondylitis. Linkage studies with the major histocompatibility complex region. Arthritis Rheum 1994, 37:1212–1220.

    Article  PubMed  CAS  Google Scholar 

  9. Reveille JD, Ball EJ, Khan MA: HLA-B27 and genetic predisposing factors in spondyloarthropathies. Curr Opin Rheumatol 2001, 13:265–272.

    Article  PubMed  CAS  Google Scholar 

  10. Atagunduz P, Appel H, Kuon W, et al.: HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum 2005, 52:892–901.

    Article  PubMed  CAS  Google Scholar 

  11. Brown MA, Brophy S, Bradbury L, et al.: Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum 2003, 48:2234–2239.

    Article  PubMed  Google Scholar 

  12. Brown MA, Edwards S, Hoyle E et al.: Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000, 9:1563–1566.

    Article  PubMed  CAS  Google Scholar 

  13. Timms AE, Crane AM, Sims AM, et al.: The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004, 75:587–595.

    Article  PubMed  CAS  Google Scholar 

  14. Laval SH, Timms A, Edwards S, et al.: Whole-genome screening in ankylosing spondylitis: evidence of non- MHC genetic-susceptibility loci. Am J Hum Genet 2001, 68:918–926.

    Article  PubMed  CAS  Google Scholar 

  15. Miceli-Richard C, Zouali H, Said-Nahal R, et al.: Signi.- cant linkage to spondyloarthropathy on 9q31-34. Hum Mol Genet 2004, 13:1641–1648.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang G, Luo J, Bruckel J, et al.: Genetic studies in familia ankylosing spondylitis susceptibility. Arthritis Rheum 2004, 50:2246–2254.

    Article  PubMed  CAS  Google Scholar 

  17. Lee YH, Rho YH, Choi SJ, et al.: Ankylosing spondylitis susceptibility loci defined by genome-search meta-analysis. J Hum Genet 2005, 50:453–459. This meta-analysis study combines and reviews four major genomewide linkage analyses of white populations (Brown et al. [7], Brown et al. [11], Miceli-Richard et al. [15], and Zhang et al. [16]). This analysis identifies the most important common genetic factors controlling AS and allied spondyloarthropathies in the general human population.

    Article  PubMed  CAS  Google Scholar 

  18. McGarry F, Neilly J, Anderson N, et al.: A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis. Rheumatology (Oxford) 2001, 40:1359–1364.

    Article  CAS  Google Scholar 

  19. Jin L, Zhang G, Akey JM, et al.: Lack of linkage of IL1RN genotypes with ankylosing spondylitis susceptibility. Arthritis Rheum 2004, 50:3047–3048.

    Article  PubMed  CAS  Google Scholar 

  20. Nickerson CL, Hogen KL, Luthra HS, et al.: Effect of H-2 genes on expression of HLA-B27 and Yersinia-induced arthritis. Scand J Rheumatol Suppl 1990, 87:85–90.

    PubMed  CAS  Google Scholar 

  21. Hammer RE, Maika SD, Richardson JA, et al.: Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLAB27- associated human disorders. Cell 1990, 63:1099–1112.

    Article  PubMed  CAS  Google Scholar 

  22. Taurog JD, Richardson JA, Croft JT, et al.: The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994, 180:2359–2364. A very interesting study, it clearly demonstrates the critical importance of the environmental component, such as bacterial infection, in RA- and SpA-like pathologies.

    Article  PubMed  CAS  Google Scholar 

  23. Glant TT, Finnegan A, Mikecz K: Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol 2003, 23:199–250.

    Article  PubMed  CAS  Google Scholar 

  24. Kuon W, Kuhne M, Busch DH, et al.: Identification of novel human aggrecan T cell epitopes in HLA-B27 transgenic mice associated with spondyloarthropathy. J Immunol 2004, 173:4859–4866.

    PubMed  CAS  Google Scholar 

  25. Taurog JD, Maika SD, Simmons WA, et al.: Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 1993, 150:4168–4178.

    PubMed  CAS  Google Scholar 

  26. Tran TM, Satumtira N, Dorris ML, et al.: HLA-B27 in transgenic rats forms disulfide-linked heavy chains oligomers and multimers that bind to the chaperone BiP. J Immunol 2004, 172:5110–5119.

    PubMed  CAS  Google Scholar 

  27. Crew MD, Effros RB, Walford RL, et al.: Transgenic mice expressing a truncated Peromyscus leucopus TNF-alpha gene manifest an arthritis resembling ankylosing spondylitis. J Interferon Cytokine Res 1998, 18:219–225.

    Article  PubMed  CAS  Google Scholar 

  28. Bockermann R, Schubert D, Kamradt T, et al.: Induction of a B-cell-dependent chronic arthritis with glucose-6-phosphate isomerase. Arthritis Res Ther 2005, 7:R1316-R1324.

    Article  PubMed  CAS  Google Scholar 

  29. Sweet HO, Green MC: Progressive ankylosis, a new skeletal mutation in the mouse. J Hered 1981, 72:87–93.

    PubMed  CAS  Google Scholar 

  30. Sampson HW: Spondyloarthropathy in progressive ankylosis (ank/ank) mice: morphological features. Spine 1988, 13:645–649.

    PubMed  CAS  Google Scholar 

  31. Ho AM, Johnson MD, Kingsley DM: Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289:265–270.

    Article  PubMed  CAS  Google Scholar 

  32. Reichenberger E, Tiziani V, Watanabe S, et al.: Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK. Am J Hum Genet 2001, 68:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  33. Pendleton A, Johnson MD, Hughes A, et al.: Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 2002, 71:933–940.

    Article  PubMed  Google Scholar 

  34. Krug HE, Wietgrefe MM, Ytterberg SR, et al.: Murine progressive ankylosis is not immunologically mediated. J Rheumatol 1997, 24:115–122.

    PubMed  CAS  Google Scholar 

  35. Timms AE, Zhang Y, Bradbury L, et al.: Investigation of the role of ANKH in ankylosing spondylitis. Arthritis Rheum 2003, 48:2898–2902.

    Article  PubMed  CAS  Google Scholar 

  36. Mikecz K, Glant TT, Poole AR: Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum 1987, 30:306–318.

    Article  PubMed  CAS  Google Scholar 

  37. Glant TT, Bardos T, Vermes C, et al.: Variations in susceptibility to proteoglycan-induced arthritis and spondylitis among C3H substrains of mice: evidence of genetically acquired resistance to autoimmune disease. Arthritis Rheum 2001, 44:682–692.

    Article  PubMed  CAS  Google Scholar 

  38. Bardos T, Szabo Z, Czipri M, et al.: A longitudinal study on an autoimmune murine model of ankylosing spondylitis. Ann Rheum Dis 2005, 64:981–987. This is the original study that describes the histopathology of the spine inflammation in great detail. The study demonstrates that disease begins with inflammation in the sacroiliac joints and with enthesitis, and then progresses upwards involving multiple IVDs. The study establishes the time course of the experimentally induced AS-like pathology in mice.

    Article  PubMed  CAS  Google Scholar 

  39. Shi S, Ciurli C, Cartman A, et al.: Experimental immunity to the G1 domain of the proteoglycan versican induces spondylitis and sacroiliitis, of a kind seen in human spondylarthropathies. Arthritis Rheum 2003, 48:2903–2915.

    Article  PubMed  CAS  Google Scholar 

  40. Trentham DE, Townes AS, Kang AH: Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 1977, 146:857–868.

    Article  PubMed  CAS  Google Scholar 

  41. Lu S, Carlsen S, Hansson AS, et al.: Immunization of rats with homologous type XI collagen leads to chronic and relapsing arthritis with different genetics and joint pathology than arthritis induced with homologous type II collagen. J Autoimmun 2002, 18:199–211.

    Article  PubMed  Google Scholar 

  42. Bora NS, Sohn JH, Kang SG, et al.: Type I collagen is the autoantigen in experimental autoimmune anterior uveitis. J Immunol 2004, 172:7086–7094.

    PubMed  CAS  Google Scholar 

  43. Zhang Y, Guerassimov A, Leroux JY, et al.: Induction of arthritis in BALB/c mice by cartilage link protein: involvement of distinct regions recognized by T and B lymphocytes. Am J Pathol 1998, 153:1283–1291.

    PubMed  CAS  Google Scholar 

  44. Zhang Y, Shi S, Ciurli C, et al.: Animal models of ankylosing spondylitis. Curr Rheumatol Rep 2002, 4:507–512.

    Article  PubMed  Google Scholar 

  45. Szabo Z, Szanto S, Vegvari A, et al.: Genetic control of experimental spondyloarthropathy. Arthritis Rheum 2005, 52:2452–2460.

    Article  PubMed  Google Scholar 

  46. Mikecz K, Glant TT, Buzas E, et al.: Proteoglycan-induced polyarthritis and spondylitis adoptively transferred to naive (nonimmunized) BALB/c mice. Arthritis Rheum 1990, 33:866–876.

    Article  PubMed  CAS  Google Scholar 

  47. Bárdos T, Mikecz K, Finnegan A, et al.: T and B cell recovery in arthritis adoptively transferred to SCID mice: antigen-specific activation is required for restoration of autopathogenic CD4+ Th1 cells in a syngeneic system. J Immunol 2002, 168:6013–6021.

    PubMed  Google Scholar 

  48. Vegvari A, Szabo Z, Szanto S, et al.: Two major interacting chromosome loci control disease susceptibility in murine model of spondyloarthropathy. J Immunol 2005, 175:2475–2483. This paper presents the first genome-wide screening for the genes and loci linked to murine SpA. Interestingly, those SpA-promoting alleles originated from chromosome 18 of the SpA-resistant DBA/2 strain, and the locus penetrance is significantly reliant upon allelic combination of another locus on chromosome 2.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav A. Adarichev PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adarichev, V.A., Glant, T.T. Experimental spondyloarthropathies: Animal models of ankylosing spondylitis. Curr Rheumatol Rep 8, 267–274 (2006). https://doi.org/10.1007/s11926-006-0007-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-006-0007-5

Keywords

Navigation