Skip to main content

Advertisement

Log in

How crystals damage tissue

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Basic calcium phosphate, calcium pyrophosphate dihydrate, and monosodium urate crystals are the most common types of crystals associated with human disease. Although there is a well-established association between these crystals and various forms of joint disease, recent evidence points to an association of basic calcium phosphate crystals with breast cancer and atherosclerosis. Crystal-induced tissue damage is affected by degradative proteases, cytokines, chemokines, and prostanoids produced by cells stimulated by crystals. In the case of basic calcium phosphate and calcium pyrophosphate dihydrate crystals, these responses are augmented by the cellular proliferation that results from their induction of mitogenesis. The understanding of the molecular mechanisms involved in generating these pathologic effects has been significantly advanced in recent years. Such advances are essential to the ongoing search for more effective therapies for crystal-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Halverson PB, Greene A, Cheung HS: Intracellular calcium responses to basic calcium phosphate crystals in fibroblasts. Osteoarthritis Cartilage 1998, 6:324–329.

    Article  PubMed  CAS  Google Scholar 

  2. Sun Y, Zeng XR, Wenger L, Cheung HS: Basic calcium phosphate crystals stimulate the endocytotic activity of cells: inhibition by anti-calcification agents. Biochem Biophys Res Commun 2003, 312:1053–1059. This paper proposes a novel mechanism of BCP crystal cellular interaction.

    Article  PubMed  CAS  Google Scholar 

  3. Morgan MP, Cooke MM, Christopherson PA, et al.: Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol Carcinog 2001, 32:111–117. This work provides the first evidence implicating BCP crystals in malignant breast disease.

    Article  PubMed  CAS  Google Scholar 

  4. Cheung HS, Story MT, McCarty DJ: Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells. Arthritis Rheum 1984, 27:668–674.

    Article  PubMed  CAS  Google Scholar 

  5. McCarthy GM, Westfall PR, Masuda I, et al.: Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase- 3) in adult porcine articular chondrocytes. Ann Rheum Dis 2001, 60:399–406.

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell PG, Struve JA, McCarthy GM, Cheung HS: Basic calcium phosphate crystals stimulate cell proliferation and collagenase message accumulation in cultured adult articular chondrocytes. Arthritis Rheum 1992, 35:343–350.

    Article  PubMed  CAS  Google Scholar 

  7. Hamilton JA, McCarthy G, Whitty G: Inflammatory microcrystals induce murine macrophage survival and DNA synthesis. Arthritis Res 2001, 3:242–246.

    Article  PubMed  CAS  Google Scholar 

  8. Rothenberg RJ, Cheung H: Rabbit synoviocyte inositol phospholipid metabolism is stimulated by hydroxyapatite crystals. Am J Physiol 1988, 254:C554-C559.

    PubMed  CAS  Google Scholar 

  9. Mitchell PG, Pledger WJ, Cheung HS: Molecular mechanism of basic calcium phosphate crystal-induced mitogenesis: role of protein kinase C. J Biol Chem 1989, 264:14071–14077.

    PubMed  CAS  Google Scholar 

  10. McCarthy GM, Augustine JA, Baldwin AS, et al.: Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts: role of nuclear factor kappaB, activator protein 1, and protein kinase C. J Biol Chem 1998, 273:35161–35169.

    Article  PubMed  CAS  Google Scholar 

  11. Nair D, Misra RP, Sallis JD, Cheung HS: Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem 1997, 272:18920–18925.

    Article  PubMed  CAS  Google Scholar 

  12. Zeng XR, Sun Y, Wenger L, Cheung HS: Induction of early growth response gene Egr2 by basic calcium phosphate crystals through a calcium-dependent protein kinase Cindependent p44/42 mitogen-activated protein kinase pathway. Cells Tissues Organs 2003, 174:63–72.

    Article  PubMed  CAS  Google Scholar 

  13. Reuben PM, Wenger L, Cruz M, Cheung HS: Induction of matrix metalloproteinase-8 in human fibroblasts by basic calcium phosphate and calcium pyrophosphate dihydrate crystals: effect of phosphocitrate. Connect Tissue Res 2001, 42:1–12.

    PubMed  CAS  Google Scholar 

  14. McCarthy GM, Mitchell PG, Cheung HS: The mitogenic response to stimulation with basic calcium phosphate crystals is accompanied by induction and secretion of collagenase in human fibroblasts. Arthritis Rheum 1991, 34:1021–1030.

    Article  PubMed  CAS  Google Scholar 

  15. McCarthy GM, Mitchell PG, Struve JA, Cheung HS: Basic calcium phosphate crystals cause coordinate induction and secretion of collagenase and stromelysin. J Cell Physiol 1992, 153:140–146.

    Article  PubMed  CAS  Google Scholar 

  16. Bai G, Howell DS, Howard GA, et al.: Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 2001, 9:416–422.

    Article  PubMed  CAS  Google Scholar 

  17. McCarthy GM, Cheung HS, Abel SM, Ryan LM: Basic calcium phosphate crystal-induced collagenase production: role of intracellular crystal dissolution. Osteoarthritis Cartilage 1998, 6:205–213.

    Article  PubMed  CAS  Google Scholar 

  18. Brogley MA, Cruz M, Cheung HS: Basic calcium phosphate crystal induction of collagenase 1 and stromelysin expression is dependent on a p42/44 mitogen-activated protein kinase signal transduction pathway. J Cell Physiol 1999, 180:215–224.

    Article  PubMed  CAS  Google Scholar 

  19. Reuben PM, Brogley MA, Sun Y, Cheung HS: Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals: role of calcium-dependent protein kinase C alpha. J Biol Chem 2002, 277:15190–15198.

    PubMed  CAS  Google Scholar 

  20. Sun Y, Wenger L, Brinckerhoff CE, et al.: Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/ mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway: involvement of transcription factor binding sites AP-1 and PEA-3. J Biol Chem 2002, 277:1544–1552. This paper characterizes the molecular pathways involved in BCP crystal-induced MMP-1 production.

    Article  PubMed  CAS  Google Scholar 

  21. Frappart L, Boudeulle M, Boumendil J, et al.: Structure and composition of microcalcifications in benign and malignant lesions of the breast: study by light microscopy, transmission and scanning electron microscopy, microprobe analysis, and X-ray diffraction. Hum Pathol 1984, 15:880–889.

    Article  PubMed  CAS  Google Scholar 

  22. Holme TC, Reis MM, Thompson A, et al.: Is mammographic microcalcification of biological significance? Eur J Surg Oncol 1993, 19:250–253.

    PubMed  CAS  Google Scholar 

  23. Tabar L, Chen HH, Duffy SW, et al.: A novel method for prediction of long-term outcome of women with T1a, T1b, and 10–14 mm invasive breast cancers: a prospective study. Lancet 2000, 355:429–433.

    PubMed  CAS  Google Scholar 

  24. Cooke MM, McCarthy GM, Sallis JD, Morgan MP: Phosphocitrate inhibits calcium hydroxyapatite induced mitogenesis and upregulation of matrix metalloproteinase-1, interleukin- 1beta and cyclooxygenase-2 mRNA in human breast cancer cell lines. Breast Cancer Res Treat 2003, 79:253–263. This research provides additional evidence that BCP crystals may aggravate the pathologic process in breast malignancy.

    Article  PubMed  CAS  Google Scholar 

  25. Rolland PH, Martin PM, Jacquemier J, et al.: Prostaglandin in human breast cancer: Evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst 1980, 64:1061–1070.

    PubMed  CAS  Google Scholar 

  26. Stary HC: Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 2000, 89(suppl):28–35.

    Article  PubMed  Google Scholar 

  27. Arad Y, Spadaro LA, Goodman K, et al.: Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000, 36:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  28. Fitzgerald PJ, Ports TA, Yock PG: Contribution of localized calcium deposits to dissection after angioplasty: an observational study using intravascular ultrasound. Circulation 1992, 86:64–70.

    PubMed  CAS  Google Scholar 

  29. Uzui H, Harpf A, Liu M, et al.: Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 2002, 106:3024–3030.

    Article  PubMed  CAS  Google Scholar 

  30. Nadra I, Florey OJ, Mason JC, et al.: Coronary artery calcification as a pro-inflammatory trigger: calcium hydroxyapatite induces secretion of pro-inflammatory cytokines by human macrophages via a protein kinase C alpha and epsilon pathway and leads to endothelial activation. Circulation 2003, 108:1432.

    Article  CAS  Google Scholar 

  31. Swan A, Chapman B, Heap P, et al.: Submicroscopic crystals in osteoarthritic synovial fluids. Ann Rheum Dis 1994, 53:467–470.

    Article  PubMed  CAS  Google Scholar 

  32. Nalbant S, Martinez JA, Kitumnuaypong T, et al.: Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003, 11:50–54.

    Article  PubMed  CAS  Google Scholar 

  33. Hoch RC, Schraufstatter IU, Cochrane CG: In vivo, in vitro, and molecular aspects of interleukin-8 and the interleukin-8 receptors. J Lab Clin Med 1996, 128:134–145.

    Article  PubMed  CAS  Google Scholar 

  34. Detmers PA, Lo SK, Olsen-Egbert E, et al.: Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1990, 171:1155–1162.

    Article  PubMed  CAS  Google Scholar 

  35. Liu R, O’Connell M, Johnson K, et al.: Extracellular signalregulated kinase 1/extracellular signal-regulated kinase 2 mitogen-activated protein kinase signaling and activation of activator protein 1 and nuclear factor kappa B transcription factors play central roles in interleukin-8 expression stimulated by monosodium urate monohydrate and calcium pyrophosphate crystals in monocytic cells. Arthritis Rheum 2000, 43:1145–1155. This research dissects the signal transduction pathways involved in MSU and CPPD crystal-induced IL-8 expression.

    Article  PubMed  CAS  Google Scholar 

  36. Tudan C, Jackson JK, Charlton L, et al.: Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol- 3-kinase-independent pathways. Biochem J 1998, 331:531–537.

    PubMed  CAS  Google Scholar 

  37. Jackson JK, Tudan C, Burt HM: The involvement of phospholipase C in crystal induced human neutrophil activation. J Rheumatol 2000, 27:2877–2885.

    CAS  Google Scholar 

  38. Tudan C, Jackson JK, Pelech SL, et al.: Selective inhibition of protein kinase C, mitogen-activated protein kinase, and neutrophil activation in response to calcium pyrophosphate dihydrate crystals, formyl-methionyl-leucyl-phenylalanine, and phorbol ester by O-(chloroacetyl-carbamoyl) fumagillol (AGM-1470; TNP-470). Biochem Pharmacol 1999, 58:1869–1880.

    Article  PubMed  CAS  Google Scholar 

  39. Tudan C, Jackson JK, Higo TT, et al.: Calcium pyrophosphate dihydrate crystal associated induction of neutrophil activation and repression of TNF-alpha-induced apoptosis is mediated by the p38 MAP kinase. Cell Signal 2004, 16:211–221. In this recent study, the p38 MAP kinase pathway is implicated in CPPD crystal-induced responses in neutrophils.

    Article  PubMed  CAS  Google Scholar 

  40. Tudan C, Jackson JK, Blanis L, et al.: Inhibition of TNF-alphainduced neutrophil apoptosis by crystals of calcium pyrophosphate dihydrate is mediated by the extracellular signalregulated kinase and phosphatidylinositol 3-kinase/Akt pathways up-stream of caspase 3. J Immunol 2000, 165:5798–5806.

    PubMed  CAS  Google Scholar 

  41. Landis RC, Haskard DO: Pathogenesis of crystal-induced inflammation. Curr Rheumatol Rep 2001, 3:36–41.

    PubMed  CAS  Google Scholar 

  42. Pouliot M, James MJ, McColl SR, et al.: Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood 1998, 91:1769–1776.

    PubMed  CAS  Google Scholar 

  43. Terkeltaub R, Zachariae C, Santoro D, et al.: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum 1991, 34:894–903.

    Article  PubMed  CAS  Google Scholar 

  44. Terkeltaub R, Baird S, Sears P, et al.: The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in the air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum 1998, 41:900–909.

    Article  PubMed  CAS  Google Scholar 

  45. Liu R, Aupperle K, Terkeltaub R: Src family protein tyrosine kinase signaling mediates monosodium urate crystalinduced IL-8 expression by monocytic THP-1 cells. J Leukoc Biol 2001, 70:961–968. This work further characterizes the signaling pathways involved in MSU crystal induction of IL-8 expression.

    PubMed  CAS  Google Scholar 

  46. Schiltz C, Liote F, Prudhommeaux F, et al.: Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum 2002, 46:1643–1650. This paper explores the cellular infiltrate in MSU crystal-induced inflammation and suggests a role for mast cells.

    Article  PubMed  CAS  Google Scholar 

  47. Bouchard L, de Medicis R, Lussier A, et al.: Inflammatory microcrystals alter the functional phenotype of human osteoblastlike cells in vitro: synergism with IL-1 to overexpress cyclooxygenase- 2. J Immunol 2002, 168:5310–5317.

    PubMed  CAS  Google Scholar 

  48. Liu R, Liote F, Rose DM, et al.: Proline-rich tyrosine kinase 2 and Src kinase signaling transduce monosodium urate crystal-induced nitric oxide production and matrix metalloproteinase 3 expression in chondrocytes. Arthritis Rheum 2004, 50:247–258.

    Article  PubMed  CAS  Google Scholar 

  49. Ortiz-Bravo E, Schumacher HR Jr.: Components generated locally as well as serum alter the phlogistic effect of monosodium urate crystals in vivo. J Rheumatol 1993, 20:1162–1166.

    PubMed  CAS  Google Scholar 

  50. Landis RC, Yagnik DR, Florey O, et al.: Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum 2002, 46:3026–3033. This paper provides a novel and compelling explanation for the spontaneous resolution of acute gouty inflammation.

    Article  PubMed  CAS  Google Scholar 

  51. Akahoshi T, Namai R, Murakami Y, et al.: Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum 2003, 48:231–239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molloy, E.S., McCarthy, G.M. How crystals damage tissue. Curr Rheumatol Rep 6, 228–234 (2004). https://doi.org/10.1007/s11926-004-0073-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0073-5

Keywords

Navigation