Skip to main content

Advertisement

Log in

The genetic basis of spondyloarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Spondyloarthritis tends to cluster in families and, to a great extent, is associated with human leukocyte antigen (HLA) B27. In fact, the population frequency of spondyloarthritis in most groups is proportional to that of HLA-B27. But the frequency of HLA-B27 in the population-at-large far exceeds that of spondyloarthritis, suggesting other genetic factors also are operative. Other major histocompatibility complex genes have been implicated, especially HLA-DR, though linkage to HLA-B27 confounds the analysis of this in many studies. Genome-wide scans have implicated regions on chromosomes 2q, 6p, 6q, 10q, 11q, 16q, 17q, and 19q in ankylosing spondylitis, on 4, 6p, and 17q in psoriasis, and on 7q and 16q in inflammatory bowel disease. The search for non-major histocompatibility complex candidate genes has been complicated by inadequate power, because of the small effect they exert on overall disease susceptibility, although recent studies are revealing promising candidates that must be confirmed by other groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. van der Linden SJ, van der Heijde D: Spondylarthopathies: ankylosing spondylitis. In Kelley’s Textbook of Rheumatology, edn 6. Edited by Ruddy S, Harris ED, Sledge CB. Philadelphia: WB Saunders; 2000:1039–1053.

    Google Scholar 

  2. Khan MA: Update on spondyloarthropathies. Ann Intern Med 2002, 136:896–907.

    PubMed  Google Scholar 

  3. Gofton JP, Chalmers A, Price GE, Reeve CE: HL-A 27 and ankylosing spondylitis in B.C. Indians. J Rheumatol 1984, 11:572–573.

    PubMed  CAS  Google Scholar 

  4. Dai SM, Han XH, Zhao DB, et al.: Prevalence of rheumatic symptoms, rheumatoid arthritis, ankylosing spondylitis and gout in Shanghai, China: a COPCORD study. J Rheumatol 2003, 30:2245–2251.

    PubMed  Google Scholar 

  5. Mody GM, Parke FA, Reveille JD: Articular manifestations of human immunodeficiency virus infection. Best Pract Res Clin Rheumatol 2003, 17:265–287. This paper reviews the status of SpA and other types of joint diseases in Africa and in the US occurring in the setting of HIV infection, presenting new data as to prevalence and, among Africans, the lack of positivity for HLA-B27 in those with ReA. The data from Africa seem to confound suggestions from centers in the US that ReA is more a phenomenon associated with behaviors associated with higher HIV risk and raises the concern that ReA may be facilitated by the concomitant presences of HIV-1.

    Article  PubMed  Google Scholar 

  6. Brown MA, Laval SH, Brophy S, Calin A: Recurrence risk modeling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis 2000, 59:883–886.

    Article  PubMed  CAS  Google Scholar 

  7. Brown MA, Kennedy LG, MacGregor AJ, et al.: Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 1997, 40:1823–1828.

    Article  PubMed  CAS  Google Scholar 

  8. Rahman P, Gladman DD, Schentag CT, Petronis A: Excessive paternal transmission in psoriatic arthritis. Arthritis Rheum 1999, 42:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  9. Mayberry JF, Rhodes J, Newcombe RG: Familial prevalence of inflammatory bowel disease in relatives of patients with Crohn’s disease. BMJ 1980, 280:84.

    Article  PubMed  CAS  Google Scholar 

  10. Brown MA, Wordsworth BP, Reveille JD: Genetics of ankylosing spondylitis. Clin Exp Rheumatol 2002, 20(suppl):S43-S49.

    PubMed  CAS  Google Scholar 

  11. Ekman P, Kirveskari J, Granfors K: Modification of disease outcome in Salmonella-infected patients by HLA-B27. Arthritis Rheum 2000, 43:1527–1534.

    Article  PubMed  CAS  Google Scholar 

  12. Martin TM, Smith JR, Rosenbaum JT: Anterior uveitis: current concepts of pathogenesis and interactions with spondyloarthopathies. Curr Opin Rheumatol 2002, 14:337–341.

    Article  PubMed  Google Scholar 

  13. Reveille JD, Ball EJ, Khan MA: HLA-B27 and genetic predisposing factors in spondyloarthropathies. Curr Opin Rheumatol 2001, 13:265–272.

    Article  PubMed  CAS  Google Scholar 

  14. Hillig RC, Hulsmeyer M, Saenger W, et al.: Thermodynamic and structural analysis of peptide- and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association. J Biol Chem 2004, 279:652–653. This recent paper presents the crystal sequence of HLA-B*2709, which is not associated with SpA, and suggests that the HLA-B pocket per se is not the only one in the antigen binding cleft to play an important role in susceptibility to SpA.

    Article  PubMed  CAS  Google Scholar 

  15. Kuon W, Holzhutter HG, Appel H, et al.: Identification of HLAB27- restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases. J Immunol 2001, 167:4738–4746.

    PubMed  CAS  Google Scholar 

  16. Montserrat V, Marti M, Lopez de Castro JA: Allospecific T cell epitope sharing reveals extensive conservation of the antigenic features of peptide ligands among HLA-B27 subtypes differentially associated with spondyloarthritis. J Immunol 2003, 170:5778–5785.

    PubMed  CAS  Google Scholar 

  17. Dangoria NS, DeLay ML, Kingsbury DJ, et al.: HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002, 277:23459–23468.

    Article  PubMed  CAS  Google Scholar 

  18. Bird LA, Peh CA, Kollnberger S, et al.: Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur J Immunol. 2003, 33:748–759.

    Article  PubMed  CAS  Google Scholar 

  19. Kollnberger S, Bird L, Sun MY, et al.: Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 2002, 46:2972–2982.

    Article  PubMed  CAS  Google Scholar 

  20. Nixon DF, Townsend ARM, Elvin JG, et al.: HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 1988, 336:484–487.

    Article  PubMed  CAS  Google Scholar 

  21. Ekman P, Saarinen M, He Q, et al.: HLA-B27-transfected (Salmonella permissive) and HLA-A2-transfected (Salmonella nonpermissive) human monocytic U937 cells differ in their production of cytokines. Infect Immun 2002, 70:1609–1614.

    Article  PubMed  CAS  Google Scholar 

  22. Inman RD, Payne U: Determinants of synoviocyte clearance of arthritogenic bacteria. J Rheumatol 2003, 30:1291–1297.

    PubMed  CAS  Google Scholar 

  23. Boyle LH, Goodall JC, Opat SS, Gaston JS: The recognition of HLA-B27 by human CD4(+) T lymphocytes. J Immunol 2001, 167:2619–2624.

    PubMed  CAS  Google Scholar 

  24. Popov I, Dela Cruz CS, Barber BH, et al.: Breakdown of CTL tolerance to self HLA-B*2705 induced by exposure to Chlamydia trachomatis. J Immunol 2002, 169:4033–4038.

    PubMed  CAS  Google Scholar 

  25. van der Linden SM, Valkenburg HA, de Jongh BM, Cats A: The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a comparison of relatives of spondylitis patients with the general population. Arthritis Rheum 1984, 27:241–249.

    Article  PubMed  Google Scholar 

  26. Brown MA, Kennedy LG, Darke C, et al.: The effect of HLA-DR genes on susceptibility to and severity of ankylosing spondylitis. Arthritis Rheum 1998, 41:460–465.

    Article  PubMed  CAS  Google Scholar 

  27. Said-Nahal R, Miceli-Richard C, Gautreau C, et al.: The role of HLA genes in familial spondyloarthropathy: a comprehensive study of 70 multiplex families. Ann Rheum Dis 2002, 61:201–206.

    Article  PubMed  CAS  Google Scholar 

  28. Singal DP, Li J, Zhang G: Microsatellite polymorphism of the MICA gene and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol 2001, 19:451–452.

    PubMed  CAS  Google Scholar 

  29. Gonzalez S, Torre-Alonso JC, Martinez-Borra J, et al.: TNF-238A promoter polymorphism contributes to susceptibility to ankylosing spondylitis in HLA-B27 negative patients. J Rheumatol 2001, 28:1288–1293.

    PubMed  CAS  Google Scholar 

  30. Hohler T, Schaper T, Schneider PM, et al.: Association of different tumor necrosis factor alpha promoter allele frequencies with ankylosing spondylitis in HLA-B27 positive individuals. Arthritis Rheum 1998, 41:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  31. Vargas-Alarcon G, Londono JD, Hernandez-Pacheco G, et al.: Heat shock protein 70 gene polymorphisms in Mexican patients with spondyloarthropathies. Ann Rheum Dis 2002, 61:48–51.

    Article  PubMed  CAS  Google Scholar 

  32. Fraile A, Collado MD, Mataran L, et al.: TAP1 and TAP2 polymorphism in Spanish patients with ankylosing spondylitis. Exp Clin Immunogenet 2000, 17:199–204.

    Article  PubMed  CAS  Google Scholar 

  33. Maksymowych WP, Tao S, Vaile J, et al.: LMP2 polymorphism is associated with extraspinal disease in HLA-B27 negative Caucasian and Mexican Mestizo patients with ankylosing spondylitis. J Rheumatol 2000, 27:183–189.

    PubMed  CAS  Google Scholar 

  34. Murray C, Mann DL, Gerber LN, et al.: Histocompatibility alloantigens in psoriasis and psoriatic arthritis: evidence for the influence of multiple genes in the major histocompatibility complex. J Clin Invest 1980, 66:670–675.

    PubMed  CAS  Google Scholar 

  35. Balding J, Kane D, Livingstone W, et al.: Cytokine gene polymorphisms: association with psoriatic arthritis susceptibility and severity. Arthritis Rheum 2003, 48:1408–1413. This is an examination of interleukin-1-beta, interleukin-6, TNFalpha and -beta, interleukin-10 promoter, and interleukin-1 receptor antagonist polymorphisms in 147 patients with PsA and 389 control subjects. With the remarkable success of biologic treatments, looking for novel cytokine gene polymorphisms is particularly relevant and offers hope for additional biologic treatments. In this study, only TNF polymorphisms were associated with disease severity (as defined by age at onset and radiographic severity of articular erosions).

    Article  PubMed  CAS  Google Scholar 

  36. Orchard TR, Thiyagaraja S, Welsh KI, et al.: Clinical phenotype is related to HLA genotype in the peripheral arthropathies of inflammatory bowel disease. Gastroenterology 2000, 118:274–278.

    Article  PubMed  CAS  Google Scholar 

  37. Laval SH, Timms A, Edwards S, et al.: Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am J Hum Genet 2001, 68:918–926. This is the current "gold standard" of genome-wide scans in ankylosing spondylitis. In addition to implicating the MHC heavily, other non-MHC regions are suggested, particularly a region at chromosome 16q.

    Article  PubMed  CAS  Google Scholar 

  38. Nair RP, Stuart P, Henseler T, et al.: Localization of psoriasissusceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet 2000, 66:1833–1844.

    Article  PubMed  CAS  Google Scholar 

  39. Tomfohrde J, Silverman A, Barnes R, et al.: Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994, 264:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  40. Becker KG, Simon RM, Bailey-Wilson JE, et al.: Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci U S A 1998, 95:9979–9984.

    Article  PubMed  CAS  Google Scholar 

  41. Capon F, Semprini S, Chimenti S, et al.: Fine mapping of the PSORS4 psoriasis susceptibility region on chromosome 1q21. J Invest Dermatol 2001, 116:728–730.

    Article  PubMed  CAS  Google Scholar 

  42. Hewett D, Samuelsson L, Polding J, et al.: Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics 2002, 79:305–314.

    Article  PubMed  CAS  Google Scholar 

  43. Hensen P, Windemuth C, Huffmeir U, et al.: Association scan of the novel psoriasis susceptibility region on chromosome 19: evidence for both susceptible and protective loci. Exp Dermatol 2003, 12:490–496.

    Article  PubMed  CAS  Google Scholar 

  44. Hugot J-P, Laurent-Puig P, Gower-Rousseau C, et al.: Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996, 379:821–823.

    Article  PubMed  CAS  Google Scholar 

  45. Bonen DK, Cho JH: The genetics of inflammatory bowel disease. Gastroenterology 2003, 124:521–536.

    Article  PubMed  CAS  Google Scholar 

  46. Giallourakis C, Stoll M, Miller K, et al.: IBD5 is a general risk factor for inflamatory bowel disease: replication of a association with Crohn’s disease and identification of a novel association with ulcerative colitis. Am J Hum Genet 2003, 73:205–211.

    Article  PubMed  CAS  Google Scholar 

  47. Beyeler C, Armstrong M, Bird HA, et al.: Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis.Ann Rheum Dis 1996, 55:66–68.

    Article  PubMed  CAS  Google Scholar 

  48. Brown MA, Edwards S, Hoyle E, et al.: Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000, 9:1563–1566.

    Article  PubMed  CAS  Google Scholar 

  49. McGarry F, Neilly J, Anderson N, et al.: A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis. Rheumatology (Oxford) 2001, 40:1359–1364.

    Article  CAS  Google Scholar 

  50. van der Paardt M, Crusius JB, Garcia-Gonzalez MA, et al.: Interleukin- 1beta and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. Rheumatology (Oxford) 2002, 41:1419–1423.

    Article  Google Scholar 

  51. Maksymowych WP, Reeve J, Reveille JD, et al.: High throughput single nucleotide polymorphism (SNP) analysis of the interleukin- 1 receptor antagonist (IL-1 RN) locus in patients with ankylosing spondylitis (AS) by MALDI-TOF mass spectroscopy. Arthritis Rheum 2003, 48:2011–2018.

    Article  PubMed  CAS  Google Scholar 

  52. Tsui FW, Tsui HW, Cheng EY, et al.: Novel genetic markers in the 5’-flanking region of ANKH are associated with ankylosing spondylitis. Arthritis Rheum 2003, 48:791–797.

    Article  PubMed  CAS  Google Scholar 

  53. Timms AE, Zhang Y, Bradbury L, et al.: Investigation of the role of ANKH in ankylosing spondylitis. Arthritis Rheum 2003, 48:2898–2902.

    Article  PubMed  CAS  Google Scholar 

  54. Mori K, Ushiyama T, Inoue K, Hukuda S: Polymorphic CAG repeats of the androgen receptor gene in Japanese male patients with ankylosing spondylitis. Rheumatology (Oxford). 2000, 39:530–532.

    Article  CAS  Google Scholar 

  55. Collado-Escobar MD, Nieto A, Mataran L, et al.: Interleukin 6 gene promoter polymorphism is not associated with ankylosing spondylitis. J Rheumatol 2000, 27:1461–1463.

    PubMed  CAS  Google Scholar 

  56. Goedecke V, Crane AM, Jaakkola E, et al.: Interleukin 10 polymorphisms in ankylosing spondylitis. Genes Immun 2003, 4:74–76.

    Article  PubMed  CAS  Google Scholar 

  57. Martin MP, Nelson G, Lee JH, et al.: Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 2002, 169:2818–2822.

    PubMed  CAS  Google Scholar 

  58. Helms C, Cao Li, Kreuger J, et al.: A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 2003, 35:349–356.

    Article  PubMed  CAS  Google Scholar 

  59. Prokunina L: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002, 32:666–669.

    Article  PubMed  CAS  Google Scholar 

  60. Rihter-Hintz D, Their R, Steinwachs S, et al.: Allelic variants of drug metabolizing enzymes as risk factors for psoriasis. J Invest Dermatol 2003, 120:765–770.

    Article  Google Scholar 

  61. Al-Heresh AM, Proctor J, Jones SM, et al.: Tumor necrosis factor- alpha polymorphism and the HLA-Cw*0602 allele in psoriatic arthritis. Rheumatology (Oxford) 2002, 41:525–530.

    Article  CAS  Google Scholar 

  62. Hugot JP, Chamaillard M, Zouali H, et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  63. Ogura Y, Bonen DK, Inohara N, et al.: A frameshift mutation on NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:537–539.

    Article  CAS  Google Scholar 

  64. Crane AM, Bradbury L, van Heel DA, et al.: Role of NOD2 variants in spondylarthritis. Arthritis Rheum 2002, 46:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  65. Miceli-Richard C, Zouali H: CARD15/NOD2 analyses in spondylarthropathy. Arthritis Rheum 2002, 46:1405–1406.

    Article  PubMed  CAS  Google Scholar 

  66. Borgiani P, Vallo L, D’Apice MR, et al.: Exclusion of CARD15/ NOD2 as a candidate susceptibility gene to psoriasis in the Italian population. Eur J Dermatol 2002, 12:540–542.

    PubMed  CAS  Google Scholar 

  67. Brant SR, Panhuysen CIM, Nicolae D, et al.: MDR1 ALA893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 2003, 73:1282–1292.

    Article  PubMed  CAS  Google Scholar 

  68. Hamersma J, Cardon LR, Bradbury L, et al.: Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheum 2001, 44:1396–1400.

    Article  PubMed  CAS  Google Scholar 

  69. Khan MA, Kushner I, Braun WE: Comparison of clinical features in HLA-B27 positive and negative patients with ankylosing spondylitis. Arthritis Rheum 1977, 20:909–912.

    Article  PubMed  CAS  Google Scholar 

  70. Vargas-Alarcón G, Londono JD, Hernandez-Pacheco G, et al.: Effect of HLA-B and HLA-DR genes on susceptibility to and severity of spondyloarthropathies in Mexican patients. Ann Rheum Dis 2002, 61:714–717.

    Article  PubMed  Google Scholar 

  71. Brown MA, Brophy S, Bradbury L, et al.: Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum 2003, 48:2234–2239. This is the first paper to systematically study genes and disease severity in AS, using age of onset, disease activity, and functional impairment as determinants of disease severity. The rationale for using age of onset came from other studies from the UK and elsewhere, suggesting that age of onset correlates with disease severity. Using functional impairment as a marker of severity is intuitive, although using disease activity, a very changeable measure especially with the BASDAI as the measure, a subjective instrument with great sensitivity but less specificity, is debatable. It is a shame that radiographic severity was not examined—biologically, this makes more sense—but was less feasible in this otherwise remarkable examination of in multiply affected families. No doubt this will be the forerunner of a number of studies like it in years to come.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reveille, J.D. The genetic basis of spondyloarthritis. Curr Rheumatol Rep 6, 117–125 (2004). https://doi.org/10.1007/s11926-004-0056-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0056-6

Keywords

Navigation