Skip to main content

Advertisement

Log in

B cells: New ways to inhibit their function in rheumatoid arthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The apparent efficacy of B-cell depletion in autoimmune diseases has increased interest in targeting B cells. One goal of next generation therapies is to develop treatments that block B-cell activation and preserve resting nonautoimmune cells that maintain B cell memory. To do so, one needs to understand how B cells are activated and what receptors and intracellular signaling pathways regulate this process. This paper will summarize B-cell activation pathways and illustrate how these are being targeted in the development of new treatments for rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lam KP, Kuhn R, Rajewsky K: In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997, 90:1073- 1083.

    Article  PubMed  CAS  Google Scholar 

  2. Mackay F, Browning JL: BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2002, 2:465- 475.

    Article  PubMed  CAS  Google Scholar 

  3. Martin F, Kearney JF: B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a "natural immune memory." Immunol Rev 2000, 175:70- 79.

    Article  PubMed  CAS  Google Scholar 

  4. Balazs M, Martin F, Zhou T, Kearney J: Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 2002, 17:341- 352. A demonstration of the T-independent antibody response to bacterial antigen.

    Article  PubMed  CAS  Google Scholar 

  5. Lu TT, Cyster JG: Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 2002, 297:409- 412.

    Article  PubMed  CAS  Google Scholar 

  6. Litinskiy MB, Nardelli B, Hilbert DM, et al.: DCs induce CD40- independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002, 3:822- 829. This paper shows that IgG switching could occur in inflammatory sites without T cell help.

    Article  PubMed  CAS  Google Scholar 

  7. Chen X, Martin F, Forbush FA, et al.: Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int Immunol 1997, 9:27- 41.

    Article  PubMed  Google Scholar 

  8. Kelsoe G: The germinal center reaction. Immunol Today 1995, 16:324- 326.

    Article  PubMed  CAS  Google Scholar 

  9. Camacho SA, Kosco-Vilbois MH, Berek C: The dynamic structure of the germinal center. Immunol Today 1998, 19:511- 514.

    Article  PubMed  CAS  Google Scholar 

  10. Kim CH, Rott LS, Clark-Lewis I, et al.: Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 2001, 193:1373- 1381.

    Article  PubMed  CAS  Google Scholar 

  11. Garside P, Ingulli E, Merica RR, et al.: Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998, 281:96- 99.

    Article  PubMed  CAS  Google Scholar 

  12. Foy TM, Aruffo A, Bajorath J, et al.: Immune regulation by CD40 and its ligand gp39. Annu Rev Immunol 1996, 14:591- 617.

    Article  PubMed  CAS  Google Scholar 

  13. Foy TM, Laman JD, Ledbetter JA, et al.: gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 1994, 180:157- 163.

    Article  PubMed  CAS  Google Scholar 

  14. Han S, Hathcock K, Zheng B, et al.: Cellular interaction in germinal centers: roles of CD40 ligand and B7-2 in established germinal centers. J Immunol 1995, 155:556- 567.

    PubMed  CAS  Google Scholar 

  15. Kawabe T, Naka T, Yoshida K, et al.: The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994, 1:167- 178.

    Article  PubMed  CAS  Google Scholar 

  16. Ansel KM, McHeyzer-Williams LJ, Ngo VN, et al.: In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 1999, 190:1123- 1134.

    Article  PubMed  CAS  Google Scholar 

  17. Voigt I, Camacho SA, de Boer BA, et al.: CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur J Immunol 2000, 30:560- 567.

    Article  PubMed  CAS  Google Scholar 

  18. Kuppers R, Zhao M, Hansmann ML, Rajewsky K: Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 1993, 12:4955- 4967.

    PubMed  CAS  Google Scholar 

  19. Rajewsky K: Clonal selection and learning in the antibody system. Nature 1996, 381:751- 758.

    Article  PubMed  CAS  Google Scholar 

  20. Kelsoe G: B cell diversification and differentiation in the periphery. J Exp Med 1994, 180:5- 6.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi Y, Cerasoli DM, Dal Porto JM, et al.: Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-xL transgenic mice. J Exp Med 1999, 190:399- 410.

    Article  PubMed  CAS  Google Scholar 

  22. William J, Euler C, Christensen S, Shlomchik MJ: Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 2002, 297:2066- 2070. This paper shows that antibodies with somatic mutations, which are typical of disease-associated autoantibodies, can be produced outside the germinal center, at least in models of lupus.

    Article  PubMed  CAS  Google Scholar 

  23. Kurosaki T: Regulation of B cell fates by BCR signaling components. Curr Opin Immunol 2002, 14:341–347.

    Article  PubMed  CAS  Google Scholar 

  24. Gauld SB, Dal Porto JM, Cambier JC: B cell antigen receptor signaling: roles in cell development and disease. Science 2002, 296:1641- 1642. An overview of BCR signaling.

    Article  PubMed  CAS  Google Scholar 

  25. Ishiai M, Kurosaki M, Pappu R, et al.: BLNK required for coupling Syk to PLCg2 and Rac1-JNK in B cells. Immunity 1999, 10:117- 125.

    Article  PubMed  CAS  Google Scholar 

  26. Winslow MM, Neilson JR, Crabtree GR: Calcium signaling in lymphocytes. Curr Opin Immunol 2003, 15:299- 307.

    Article  PubMed  CAS  Google Scholar 

  27. Takai T, Ono M, Hikida M, et al.: Augmented humoral and anaphylactic responses in Fc gamma RII-deficient. Nature 1996, 379:346- 349.

    Article  PubMed  CAS  Google Scholar 

  28. Fearon DT, Carroll MC: Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol 2000, 18:393- 422.

    Article  PubMed  CAS  Google Scholar 

  29. Doody GM, Dempsey PW, Fearon DT: Activation of B lymphocytes: integrating signals from CD19, CD22 and FcgIIb1. Curr Opin Immunol 1996, 8:378- 382.

    Article  PubMed  CAS  Google Scholar 

  30. Chang L, Karin M: Mammalian MAP kinase signaling cascades. Nature 2001, 410:37- 40.

    Article  PubMed  CAS  Google Scholar 

  31. Hao S, Kurosaki T, August A: Differential regulation of NFAT and SRF by the B cell receptor via a PLCgamma-Ca(2+)- dependent pathway. EMBO J 2003, 22:4166- 4177.

    Article  PubMed  CAS  Google Scholar 

  32. Crabtree GR: Calcium, calcineurin, and the control of transcription. J Biol Chem 2001, 276:2313- 2316.

    Article  PubMed  CAS  Google Scholar 

  33. Crabtree GR, Olson EN: NFAT signaling: choreographing the social lives of cells. Cell 2002, 109:S67- S79.

    Article  PubMed  CAS  Google Scholar 

  34. Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol 2000, 18:621- 663.

    Article  PubMed  CAS  Google Scholar 

  35. Karin M, Yamamoto Y, Wang QM: The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004, 3:17- 26.

    Article  PubMed  CAS  Google Scholar 

  36. O’Shea JJ, Gadina M, Schreiber RD: Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002, 109:S121- S131.

    Article  PubMed  CAS  Google Scholar 

  37. Changelian PS, Flanagan ME, Ball DJ, et al.: Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003, 302:875- 878. An excellent example of rational drug development.

    Article  PubMed  CAS  Google Scholar 

  38. Karin M, Lin A: NF-kappaB at the crossroads of life and death. Nat Immunol 2002, 3:221–227.

    Article  PubMed  CAS  Google Scholar 

  39. Kopp E, Medzhitov R: Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003, 15:396- 401.

    Article  PubMed  CAS  Google Scholar 

  40. Claudio E, Brown K, Park S, et al.: BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 2002, 3:958- 965.

    Article  PubMed  CAS  Google Scholar 

  41. Xu LG, Shu HB: TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. J Immunol 2002, 169:6883- 6889.

    PubMed  CAS  Google Scholar 

  42. Kayagaki N, Yan M, Seshasayee D, et al.: BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002, 17:515- 524.

    Article  PubMed  CAS  Google Scholar 

  43. Cook MC, Korner H, Riminton DS, et al.: Generation of splenic follicular structure and B cell movement in tumor necrosis factor- deficient mice. J Exp Med 1998, 188:1503- 1510.

    Article  PubMed  CAS  Google Scholar 

  44. Endres R, Alimzhanov MB, Plitz T, et al.: Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 1999, 189:159- 168.

    Article  PubMed  CAS  Google Scholar 

  45. Fu YX, Huang G, Wang Y, Chaplin DD: B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin alpha-dependent fashion. J Exp Med 1998, 187:1009- 1018.

    Article  PubMed  CAS  Google Scholar 

  46. Coope HJ, Atkinson PG, Huhse B, et al.: CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 2002, 21:5375- 5385.

    Article  PubMed  CAS  Google Scholar 

  47. Calderhead DM, Kosaka Y, Manning EM, Noelle RJ: CD40- CD154 interactions in B-cell signaling. Curr Top Microbiol Immunol 2000, 245:73- 99.

    PubMed  CAS  Google Scholar 

  48. Leonard WJ, O’Shea JJ: Jaks and STATs: biological implications. Annu Rev Immunol 1998, 16:293- 322.

    Article  PubMed  CAS  Google Scholar 

  49. Hofmann SR, Ettinger R, Zhou YJ, et al.: Cytokines and their role in lymphoid development, differentiation and homeostasis. Curr Opin Allergy Clin Immunol 2002, 2:495- 506.

    Article  PubMed  Google Scholar 

  50. O’Shea JJ, Visconti R, Cheng TP, Gadina M: Jaks and STATs as therapeutic targets. Ann Rheum Dis 2000, 59:i115- 118.

    Article  PubMed  CAS  Google Scholar 

  51. Nielen MM, van Schaardenburg D, Reesink HW, et al.: Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 2004, 50:380- 386.

    Article  PubMed  Google Scholar 

  52. Rantapaa-Dahlqvist S, de Jong BA, Berglin E, et al.: Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 2003, 48:2741- 2749.

    Article  PubMed  CAS  Google Scholar 

  53. Matsumoto I, Staub A, Benoist C, Mathis D: Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 1999, 286:1732- 1735. Demonstrates that antibodies to ubiquitous antigens, once developed, can cause arthritis.

    Article  PubMed  CAS  Google Scholar 

  54. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al.: Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002, 416:603- 607.

    Article  PubMed  CAS  Google Scholar 

  55. Rifkin IR, Leadbetter EA, Beaudette BC, et al.: Immune complexes present in the sera of autoimmune mice activate rheumatoid factor B cells. J Immunol 2000, 165:1626- 1633.

    PubMed  CAS  Google Scholar 

  56. Mamula MJ, Fatenejad S, Craft J: B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 1994, 152:1453- 1461. Demonstrates that activated B cells can break T cell tolerance.

    PubMed  CAS  Google Scholar 

  57. Takemura S, Klimiuk PA, Braun A, et al.: T cell activation in rheumatoid synovium is B cell dependent. J Immunol 2001, 167:4710- 4718.

    PubMed  CAS  Google Scholar 

  58. Cambridge G, Leandro MJ, Edwards JC, et al.: Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum 2003, 48:2146- 2154.

    Article  PubMed  Google Scholar 

  59. De Vita S, Zaja F, Sacco S, et al.: Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum 2002, 46:2029- 2033.

    Article  PubMed  CAS  Google Scholar 

  60. Leandro MJ, Edwards JC, Cambridge G: Clinical outcome in 22 patients with rheumatoid arthritis treated with B lymphocyte depletion. Ann Rheum Dis 2002, 61:883- 888.

    Article  PubMed  CAS  Google Scholar 

  61. Silverman GJ, Weisman S: Rituximab therapy and autoimmune disorders: prospects for anti-B cell therapy. Arthritis Rheum 2003, 48:1484- 1492.

    Article  PubMed  CAS  Google Scholar 

  62. Takemura S, Braun A, Crowson C, et al.: Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001, 167:1072- 1080.

    PubMed  CAS  Google Scholar 

  63. Schroder AE, Greiner A, Seyfert C, Berek C: Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci U S A 1996, 93:221- 225.

    Article  PubMed  CAS  Google Scholar 

  64. Zhou T, Zhang J, Carter R, Kimberly R: BLyS and B cell autoimmunity. Curr Dir Autoimmun 2003, 6:21- 37.

    Article  PubMed  Google Scholar 

  65. Zhang J, Roschke V, Baker KP, et al.: Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 2001, 166:6- 10.

    PubMed  CAS  Google Scholar 

  66. Tan S-M, Xu D, Roschke V, et al.: Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum 2003, 48:982- 992.

    Article  PubMed  CAS  Google Scholar 

  67. O’Shea JJ, Ma A, Lipsky P: Cytokines and autoimmunity. Nat Rev Immunol 2002, 2:37- 45.

    Article  PubMed  CAS  Google Scholar 

  68. Wendling D, Racadot E, Wijdenes J: Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J Rheumatol 1993, 20:259- 262.

    PubMed  CAS  Google Scholar 

  69. Zuany-Amorim C, Hastewell J, Walker C: Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 2002, 1:797- 807.

    Article  PubMed  CAS  Google Scholar 

  70. Choy EH, Isenberg DA, Garrood T, et al.: Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 2002, 46:3143- 3150.

    Article  PubMed  CAS  Google Scholar 

  71. Bruhl H, Cihak J, Stangassinger M, et al.: Depletion of CCR5- expressing cells with bispecific antibodies and chemokine toxins: a new strategy in the treatment of chronic inflammatory diseases and HIV. J Immunol 2001, 166:2420- 2426.

    PubMed  CAS  Google Scholar 

  72. Kremer JM, Westhovens R, Leon M, et al.: Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003, 349:1907- 1915.

    Article  PubMed  CAS  Google Scholar 

  73. Kraan MC, van Kuijk AW, Dinant HJ, et al.: Alefacept treatment in psoriatic arthritis: reduction of the effector T cell population in peripheral blood and synovial tissue is associated with improvement of clinical signs of arthritis. Arthritis Rheum 2002, 46:2776- 2784.

    Article  PubMed  CAS  Google Scholar 

  74. Krueger GG, Papp KA, Stough DB, et al.: A randomized, doubleblind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol 2002, 47:821- 833.

    Article  PubMed  Google Scholar 

  75. Kavanaugh AF, Schulze-Koops H, Davis LS, Lipsky PE: Repeat treatment of rheumatoid arthritis patients with a murine anti-intercellular adhesion molecule 1 monoclonal antibody. Arthritis Rheum 1997, 40:849- 853.

    Article  PubMed  CAS  Google Scholar 

  76. Ghosh S, Goldin E, Gordon FH, et al.: Natalizumab for active Crohn’s disease. N Engl J Med 2003, 348:24- 32.

    Article  PubMed  CAS  Google Scholar 

  77. Dedrick RL, Walicke P, Garovoy M: Anti-adhesion antibodies efalizumab, a humanized anti-CD11a monoclonal antibody. Transpl Immunol 2002, 9:181- 186.

    Article  PubMed  CAS  Google Scholar 

  78. Smolen JS, Steiner G: Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2003, 2:473- 488.

    Article  PubMed  CAS  Google Scholar 

  79. Shanahan JC, Moreland LW, Carter RH: Upcoming biologic agents for the treatment of rheumatic diseases. Curr Opin Rheumatol 2003, 15:226- 236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, R.H. B cells: New ways to inhibit their function in rheumatoid arthritis. Curr Rheumatol Rep 6, 357–363 (2004). https://doi.org/10.1007/s11926-004-0010-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0010-7

Keywords

Navigation