Skip to main content
Log in

Mechanisms of bone resorption and new bone formation in spondyloarthropathies

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Spondyloarthropathies (SpA) share clinical features such as sacroiliitis, axial immobility, and peripheral arthropathies. They also share a strong association with human leukocyte antigen-B27, implicating T cells and antigen-presenting cells in the disease process. Inflammation seems to underlie the pathogenesis of SpA, particularly in the axial skeleton and entheses. Pathologic bone loss and formation occur simultaneously in inflamed regions, suggesting an inflammation-induced dysregulation of osteoclast and osteoblast activity. Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) appear to be central to the disease, because TNFα blockade has been shown to effectively improve clinical outcome. Other cytokines such as transforming growth factor-beta, interferon-gamma (IFNγ), and interleukin-18 are also likely to be important in SpA. Activated T cells have been shown to produce cytokines such as IFNγ and receptor activator of nuclear-factorkappaB ligand, with direct effects on osteoclastogenesis. The dual role of T cells in immunobiology and skeletal biology provides a possible link between human leukocyte antigen-B27, pro-inflammatory cytokines, and bone cells in SpA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gonzalez S, Martinez-Borra J, Lopez-Larrea C:Immunogenetics, HLA-B27 and spondyloarthropathies. Curr Opin Rheumatol 1999, 11:257–264.

    Article  PubMed  CAS  Google Scholar 

  2. Khan MA: Update: the twenty subtypes of HLA-B27. Curr Opin Rheumatol 2000, 12:235–238.

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez I, Lopez de Castro JA: HLA-B27 and immunogenetics of spondyloarthropathies. Curr Opin Rheumatol 2000, 12:248–253.

    Article  PubMed  CAS  Google Scholar 

  4. Resnik CS, Resnick D: Radiology of disorders of the sacroiliac joints. JAMA 1985, 253:2863–2866.

    Article  PubMed  CAS  Google Scholar 

  5. Teitelbaum SL: Bone resorption by osteoclasts. Science 2000, 289:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  6. Takayanagi H, Ogasawara K, Hida S, et al.: T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000, 408:600–605. Demonstrates that IFNγ producing T cells may have a role in inhibiting osteoclastogenesis, further implicating T cells in bone biology.

    Article  PubMed  CAS  Google Scholar 

  7. Hsu H, Lacey DL, Dunstan CR, et al.: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999, 96:3540–3545.

    Article  PubMed  CAS  Google Scholar 

  8. Kong YY, Yoshida H, Sarosi I, et al.: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397:315–323.

    Article  PubMed  CAS  Google Scholar 

  9. Lacey DL, Timms E, Tan HL, et al.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93:165–176.

    Article  PubMed  CAS  Google Scholar 

  10. Simonet WS, Lacey DL, Dunstan CR, et al.: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997, 89:309–319.

    Article  PubMed  CAS  Google Scholar 

  11. Laloux L, Voisin MC, Allain J, et al.:Immunohistological study of entheses in spondyloarthropathies: comparison in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 2001, 60:316–321.

    Article  PubMed  CAS  Google Scholar 

  12. McGonagle D, Marzo-Ortega H, O’Connor P, et al.: Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 2002, 61:534–537.

    Article  PubMed  CAS  Google Scholar 

  13. Lam J, Takeshita S, Barker JE, et al.:TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000, 106:1481–8. Provides definitive evidence regarding the direct and synergistic effect of TNFγ on RANKL-mediated osteoclastogenesis on osteoclastogenesis.

    Article  PubMed  CAS  Google Scholar 

  14. Massey HM, Scopes J, Horton MA, Flanagan AM: Transforming growth factor-beta1 (TGF-beta) stimulates the osteoclast- forming potential of peripheral blood hematopoietic precursors in a lymphocyte-rich microenvironment. Bone 2001, 28:577–582.

    Article  PubMed  CAS  Google Scholar 

  15. Sells Galvin RJ, Gatlin CL, Horn JW, Fuson TR: TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. Biochem Biophys Res Commun 1999, 265:233–239.

    Article  PubMed  CAS  Google Scholar 

  16. Gorman JD, Sack KE, Davis JC, Jr:Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha. N Engl J Med 2002, 346:1349–1356. Demonstrates the clinical efficacy of anti-inflammatory treatments, and underscores the importance of cytokines in SpA.

    Article  PubMed  CAS  Google Scholar 

  17. Braun J, de Keyser F, Brandt J, et al.: New treatment options in spondyloarthropathies: increasing evidence for significant efficacy of anti-tumor necrosis factor therapy. Curr Opin Rheumatol 2001, 13:245–249.

    Article  PubMed  CAS  Google Scholar 

  18. Bousso P, Bhakta NR, Lewis RS, Robey E:Dynamics of thymocyte-stromal cell interactions visualized by two- photon microscopy. Science 2002, 296:1876–1880.

    Article  PubMed  CAS  Google Scholar 

  19. Marker-Hermann E, Schwab P: T-cell studies in the spondyloarthropathies. Curr Rheumatol Rep 2000, 2:297–305.

    PubMed  CAS  Google Scholar 

  20. McCauley LK, Rosol TJ, Capen CC, Horton JE: A comparison of bone turnover in athymic (nude) and euthymic mice: biochemical, histomorphometric, bone ash and in vitro studies. Bone 1989, 10:29–34.

    Article  PubMed  CAS  Google Scholar 

  21. McCauley LK, Rosol TJ, Capen CC, et al.: Investigations on in vitro bone resorbing activity from athymic (nude) and euthymic mouse splenic leukocytes. Bone 1989, 10:389–394.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson DM, Maraskovsky E, Billingsley WL, et al.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997, 390:175–179.

    Article  PubMed  CAS  Google Scholar 

  23. Kong YY, Feige U, Sarosi I, et al.: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999, 402:304–309. Provides a molecular mechanism by which activated T cells can drive osteoclastogenesis, potentially linking immunobiology and bone biology. This finding may have relevance in SpA, because of the implicated role of T cells in the disease as shown by the HLA-B27 association.

    Article  PubMed  CAS  Google Scholar 

  24. Horwood NJ, Elliott J, Martin TJ, Gillespie MT:IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol 2001, 166:4915–4921.

    PubMed  CAS  Google Scholar 

  25. Takayanagi H, Kim S, Matsuo K, et al.: RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002, 416:744–749.

    Article  PubMed  CAS  Google Scholar 

  26. Wei S, Wang MW, Teitelbaum SL, Ross FP: Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-κB and MAP kinase signaling. J Biol Chem 2001, 21:21.

    Google Scholar 

  27. Stafford L, Youssef PP: Spondyloarthropathies: an overview. Intern Med J 2002, 32:40–46.

    Article  PubMed  CAS  Google Scholar 

  28. Ducy P, Schinke T, Karsenty G: The osteoblast: a sophisticated fibroblast under central surveillance. Science 2000, 289:1501–1504.

    Article  PubMed  CAS  Google Scholar 

  29. Berthelot JM, Glemarec J, Guillot P, et al.: New pathogenic hypotheses for spondyloarthropathies. Joint Bone Spine 2002, 69:114–122.

    Article  PubMed  Google Scholar 

  30. Wagner EF, Karsenty G: Genetic control of skeletal development. Curr Opin Genet Dev 2001, 11:527–532.

    Article  PubMed  CAS  Google Scholar 

  31. Otto F, Thornell AP, Crompton T, et al.: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997, 89:765–771.

    Article  PubMed  CAS  Google Scholar 

  32. Takeda S, Bonnamy JP, Owen MJ, et al.: Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev 2001, 15:467–481.

    Article  PubMed  CAS  Google Scholar 

  33. Nakashima K, Zhou X, Kunkel G, et al.:The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108:17–29. This molecule has a critical role in osteoblast formation, and may be a useful target in the amelioration of the sclerotic bone response of SpA.

    Article  PubMed  CAS  Google Scholar 

  34. Maksymowych WP, Lambert R, Jhangri GS, et al.:Clinical and radiological amelioration of refractory peripheral spondyloarthritis by pulse intravenous pamidronate therapy. J Rheumatol 2001, 28:144–155.

    PubMed  CAS  Google Scholar 

  35. Ortiz AM, Laffon A, Gonzalez-Alvaro I: CD69 expression on lymphocytes and interleukin-15 levels in synovial fluids from different inflammatory arthropathies. Rheumatol Int 2002, 21:182–188.

    Article  PubMed  CAS  Google Scholar 

  36. Kruithof E, Kestelyn P, Elewaut C, et al.: Successful use of infliximab in a patient with treatment resistant spondyloarthropathy related uveitis. Ann Rheum Dis 2002, 61:470.

    Article  PubMed  CAS  Google Scholar 

  37. Kruithof E, Van Den BF, Baeten D, et al.: Repeated infusions of infliximab, a chimeric anti-TNFalpha monoclonal antibody, in patients with active spondyloarthropathy: one year follow up. Ann Rheum Dis 2002, 61:207–212.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Schwarz, E.M. Mechanisms of bone resorption and new bone formation in spondyloarthropathies. Curr Rheumatol Rep 4, 513–517 (2002). https://doi.org/10.1007/s11926-002-0059-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0059-0

Keywords

Navigation