Skip to main content

Advertisement

Log in

Animal models of ankylosing spondylitis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The pathology of ankylosing spondylitis (AS) and related spondyloarthropathies (SpA) characteristically involve a sacroiliitis and inflammation of the intervertebral discs (IVD) in the lumbar spine, and an enthesitis at sites of ligamentous insertions into bone. The proteoglycans aggrecan and versican are large molecules that aggregate with hyaluronic via a globular 1 domain. These domains share significant homology at the level of B and T cell epitope recognition. Both proteoglycans are present in the intervertebral disc and hyaline cartilages of the sacroiliac joint, as well as in entheses. Whereas aggrecan is most concentrated in the nucleus of the IVD and in articular cartilages and endplates, versican is generally absent from these tissues except in the sacroiliac joint, but is concentrated in ligaments and the annulus. Immunity to these molecules in BALB/c mice results in an AS-like pathology, including sacroiliitis, enthesitis, and discitis. The pathology of AS is closely associated with the expression of the class I molecule human leukocyte antigen-B27. Rats bearing this transgene develop an AS-like pathology, as well as other various signs of autoimmunity. Ankylosing spondylitis is characterized by an ankylosing pathology whereby bone formation in the annulus leads to intervertebral fusion. Mice bearing the ank/ank defect gene develop a bony ankylosis of the spine like that seen in advanced AS and related SpA. These three animal models provide insight into the pathogenesis of SpA, and opportunities to investigate their pathology in relationship to human disease where investigation of the pathobiology is very difficult, because of restricted access to involved tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Khan MA: A Worldwide Overview: The Epidemiology of HLA-B27 and Associated Spondyloarthritides. Oxford: Oxford University Press; 1998.

    Google Scholar 

  2. Eulderink F: Pathology of ankylosing spondylitis. Spine 1990, 4:507–528.

    Google Scholar 

  3. Shichikawa K: Histopathology of early sacroiliitis and enthesitis in ankylosing spondylitis. In In Advances in Inflammation Research, vol 9. New York: Raven Press; 1985:PAGES.

    Google Scholar 

  4. Braun J, Bollow M, Neure L, et al.: Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995, 38:499–505.

    Article  PubMed  CAS  Google Scholar 

  5. Thorsby E:HLA associated diseases. Hum Immunol 1997, 53:1–11.

    Article  PubMed  CAS  Google Scholar 

  6. Fiorillo MT, Maragno M, Butler R, et al.:CD8(+) T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J Clin Invest 2000, 106:47–53.

    PubMed  CAS  Google Scholar 

  7. Lopez de Castro JA:The pathogenetic role of HLA-B27 in chronic arthritis. Curr Opin Immunol 1998, 10:59–66.

    Article  PubMed  CAS  Google Scholar 

  8. Hammer RE, Maika SD, Richardson JA, et al.:Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2 microglobulin: an animal model of HLA-B27-associated human disorders. Cell 1990, 63:1099–1112. This paper shows that introduction iof the transgenes for human HLA B-27 and beta-2-microglobulin into rats leads to spontaneous development of multiple pathologies characteristic of autoimmunity, including features characteristic of the pathobiology of spondyloarthropathies.

    Article  PubMed  CAS  Google Scholar 

  9. Taurog JD, Maika SD, Satumtira N, et al.: Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999, 169:209–223.

    Article  PubMed  CAS  Google Scholar 

  10. Antoniou J, Nelson F, Steffen T, et al.:The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. J Clin Invest 1996, 98:996–1003.

    PubMed  CAS  Google Scholar 

  11. Sztrolovics R, Grover J, Cs-Szabo G, et al.: The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 2002, 20:257–266.

    Article  PubMed  Google Scholar 

  12. Poole AR: The histopathology of ankylosing spondylitis: are there unifying hypotheses? Am J Med Sci 1998, 316:228–233. A discussion of how the various pathologies seen in AS may be caused by autoimmunity to proteoglycans such as aggrecan and versican that share a G1 globular domain that binds hyaluronan. Subsequent work by this group (in a manuscript submitted for publication) has shown that immunity to aggrecan and versican G1 can lead to the development of spondylitis, enthesitis, and polyarthritis (polyarthritis in the case of aggrecan G1only).

    Article  PubMed  CAS  Google Scholar 

  13. Visconti CS, Kavalkovich K, Wu J-J, Niyibizi C: Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys 1996, 329:135–142.

    Article  Google Scholar 

  14. McGonagle D, Marzo-Ortega H, O’Connor P, et al.: Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 2002, 6:534–537.

    Article  Google Scholar 

  15. Brandt J, Bollow M, Haberle J, et al.: Studying patients with inflammatory back pain and arthritis of the lower limbs clinically and by magnetic resonance imaging: many, but not all patients with sacroiliitis have spondyloarthropathy. Rheumatology 1999, 38:831–836.

    Article  PubMed  CAS  Google Scholar 

  16. McGonagle D, Gibbon W, Emery P:Classification of inflammatory arthritis by enthesitis. Lancet 1998, 352:1137–1140.

    Article  PubMed  CAS  Google Scholar 

  17. Paquin JD, van der Rest M, Marie PJ, et al.:Biochemical and morphological studies of cartilage from the adult human sacroiliac joint. Arthritis Rheum 1983, 26:887–895.

    Article  PubMed  CAS  Google Scholar 

  18. Francois RJ, Gardner DL, Degrave EJ, Bywaters EG: Histopathologic evidence that sacroiliitis in ankylosing spondylitis is not merely enthesitis. Arthritis Rheum 2000, 43:2011–2024.

    Article  PubMed  CAS  Google Scholar 

  19. Braun J, Khan MA, Sieper J:Enthesitis and ankylosis in spondyloarthropathy: what is the target of the immune response? Ann Rheum Dis 2000, 59:985–994.

    Article  PubMed  CAS  Google Scholar 

  20. Ball J:Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 1971, 30:213–223.

    PubMed  CAS  Google Scholar 

  21. Braun J, Bollow M, Eggens U, et al.:Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. Arthritis Rheum 1994, 37:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  22. McGonagle D, Khan MA, Marzo-Ortega H, et al.:Enthesitis in spondyloarthropathy. Curr Opin Rheum 1999, 11:244–250.

    Article  CAS  Google Scholar 

  23. Crew MD, Effros RB, Walford RL, et al.: Transgenic mice expressing a truncated TNF-alpha gene manifest an arthritis resembling ankylosing spondylitis. J Interferon Cytokine Res 1998, 18:219–225.

    PubMed  CAS  Google Scholar 

  24. MarkerHermann E, Fassbender HG, Kessler S, et al.:Transgenic mice with an epidermal overexpression of bone morphogenic protein-6 (BMP-6) present with psoriatic skin lesions and osteoarthropathy. Arthritis Rheum 1997, 40:1382–1382.

    Article  Google Scholar 

  25. Sweet H, Green M: Progressive ankylosis, a new skeletal mutation in the mouse. Heredity 1981, 72:87–93.

    CAS  Google Scholar 

  26. Ho AM, Johnson MD, Kingsley DM:Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289:265–270. The importance of the ank gene in the control of tissue calcification is explored with the description of the gene and the membrane protein (ANK), which controls pyrophosphate levels.

    Article  PubMed  CAS  Google Scholar 

  27. Hakim FT, Cranley R, Brown KS, et al.: Hereditary joint disorder in progressive ankylosis (ank/ank) mice. I. Association of calcium hydroxyapatite deposition with inflammatory arthropathy. Arthritis Rheum 1984, 27:1411–1420. The study demonstrates the development of calcium hydroxyapatite deposition, such as is seen in ankylosis of the human spine, and in ank/ank mice that develop a progressive ankylosis.

    Article  PubMed  CAS  Google Scholar 

  28. Sampson HW:Spondyloarthropathy in progressive ankylosis (ank/ank) mice: morphological features. Spine 1988, 13:645–649.

    Article  PubMed  CAS  Google Scholar 

  29. Krug HE, Wietgrefe MM, Ytterberg SR, et al.:Murine progressive ankylosis is not immunologically mediated. J Rheumatol 1997, 24:115–122.

    PubMed  CAS  Google Scholar 

  30. Taurog JD:Arthritis in HLA-B27 transgenic animals. Am J Med Sci 1998, 316:250–256.

    Article  PubMed  CAS  Google Scholar 

  31. Taurog JD, Maika SD, Simmons WA, et al.: Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 1993, 150:4168–4178.

    PubMed  CAS  Google Scholar 

  32. Kriegsmann J, Franklin BN, Gay RE, et al.:Fusion of vertebrae and the sacroiliac joint by cartilaginous tissue in HLA-B27 transgenic rats. Verh Deutsch Ges Pathol 1996, 80,:334.

    CAS  Google Scholar 

  33. Weinreich S, Eulderink F, Capkova J, et al.: HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice. Hum Immunol 1995, 42:103–115.

    Article  PubMed  CAS  Google Scholar 

  34. Khare SD, Hansen J, Luthra HS, David CS: HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m. J Clin Invest 1996, 98:2746–2755.

    PubMed  CAS  Google Scholar 

  35. Mikecz K, Glant TT, Poole AR: Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum 1987, 30:306–318.

    Article  PubMed  CAS  Google Scholar 

  36. Glant TT, Mikecz K, Arzoumanian A, Poole AR: Proteoglycaninduced arthritis in BALB/c mice: clinical features and histopathology. Arthritis Rheum 1987, 30:201–212. Demonstration that immunity to aggrecan induces an erosive polyarthritis and an AS.

    Article  PubMed  CAS  Google Scholar 

  37. Leroux JY, Guerassimov A, Cartman A, et al.: Immunity to the G1 globular domain of the cartilage proteoglycan aggrecan can induce inflammatory erosive polyarthritis and spondylitis in BALB/c mice but immunity to G1 is inhibited by covalently bound keratan sulfate in vitro and in vivo. J Clin Invest 1996, 97:621–632. The G1 domain of aggrecan is identified as being the principal target of the immune response to aggrecan that results in the development of a polyarthritis and spondylitis.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang YP, Guerassimov A, Leroux JY, et al.: Arthritis induced by proteoglycan aggrecan G1 domain in BALB/c mice. Evidence for T cell involvement and the immunosuppressive influence of keratan sulfate on recognition of T and B cell epitopes. J Clin Invest 1998, 101:1678–1686. Shows that development of arthritis pathology in BALB/c mice results from T cell immunity to the G1 domain of aggrecan.

    PubMed  CAS  Google Scholar 

  39. Golds EE, Stephen IBM, Esdaile JM, et al.: Lymphocyte transformation to connective tissue antigens in adult and juvenile rheumatoid arthritis, osteoarthritis, ankylosing spondylitis. Systemic lupus erythematosus and a nonarthritic control population. Cell Immunol 1983, 82:196–209.

    Article  PubMed  CAS  Google Scholar 

  40. Mikecz K, Glant TT, Baron M, Poole AR: Isolation of proteoglycan-specific T lymphocytes from patients with ankylosing spondylitis. Cell Immunol 1988, 112:55–63. Identifies the presence of T-lymphocytes specific for aggrecan in patients with ankylosing spondylitis.

    Article  PubMed  CAS  Google Scholar 

  41. Glant TT, Bardos T, Vermes C, et al.: Variations in susceptibility to proteoglycan-induced arthritis and spondylitis among C3H substrains of mice: evidence of genetically acquired resistance to autoimmune disease. Arthritis Rheum 2001, 44:682–692.

    Article  PubMed  CAS  Google Scholar 

  42. Zimmermann DR, Ruoslahti E: Multiple domains of the large fibroblast proteoglycan, versican. Embo J 1989, 8:2975–2981.

    PubMed  CAS  Google Scholar 

  43. Shi SL, Ciurli C, Cartman A, et al.: The G1 domain of the human proteoglycan versican induces spondylitis and sacroiliitis in BALB/c mice without peripheral polyarthritis: An animal model for ankylosing spondylitis. Arthritis Rheum 2001, 44:S240. First report that immunity to the G1 domain of versican induces spondylitis and sacroiliitis, but not polyarthritis, in BALB/c mice.

    Article  Google Scholar 

  44. Bode-Lesniewska B, Dours-Zimmermann MT, Odermatt BF, et al.: Distribution of the large aggregating proteoglycan versican in adult human tissues. J Histochem Cytochem 1996, 44:303–312.

    PubMed  CAS  Google Scholar 

  45. Melrose J, Ghosh P, Taylor TK: A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 2001, 198:3–15.

    Article  PubMed  CAS  Google Scholar 

  46. Waggett AD, Ralphs JR, Kwan AP, et al.:Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 1998, 16:457–470. The description of a specialized fibrocartilage at entheses, which includes the presence of the proteoglycan versican.

    Article  PubMed  CAS  Google Scholar 

  47. Benjamin M, McGonagle D:The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001, 199:503–526.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang Y, Cao L, Kiani C, et al.: Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J Cell Biochem 1999, 73:445–457.

    Article  PubMed  CAS  Google Scholar 

  49. Breban M, Fernandez-Sueiro JL, Richardson JA, et al.: T cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol 1996, 156:794–803.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Shi, S., Ciurli, C. et al. Animal models of ankylosing spondylitis. Curr Rheumatol Rep 4, 507–512 (2002). https://doi.org/10.1007/s11926-002-0058-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0058-1

Keywords

Navigation