Skip to main content

Advertisement

Log in

Immunopathogenesis of vasculitis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Vasculitis is defined by the presence of leukocytes in the vessel wall with reactive damage to mural structures, leading to tissue ischemia and necrosis. The immunopathologic events that initiate the process of vascular inflammation and blood vessel damage are unclear. Damage of vascular endothelial cells and the recruitment and accumulation of the inflammatory infiltrate are determined by the endothelial cell and the bystanders, including the expression of adhesion molecules, the secretion of peptides and hormones, and the specific interaction with inflammatory cells. In addition to the endothelial cells, which provide costimulatory function, other cellular components and nonendothelial structures of the vessel wall are involved in controlling the inflammatory process, serve as antigen-presenting cells, and contribute with inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Krishnaswamy G, Kellet J, Year L, et al.: Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J Interferon Cytokine Res 1999, 19:91–104. This concise review describes the principal cytokines of the endothelium, their regulation, and the role in human diseases.

    Article  PubMed  CAS  Google Scholar 

  2. Preissner K, Nawroth P, Kanse S: Vascular protease receptors: Integrating haemostasis and endothelial cell functions. J Pathol 2000, 190:360–372.

    Article  PubMed  CAS  Google Scholar 

  3. Michiels C, Arnould T, Remacle J: Endothelial cell response to hypoxia. Biochem Biophys Acta 2000, 1497:1–10. This is a complete review of the biochemical and molecular responses of the endothelial cell to lack of oxygen.

    Article  PubMed  CAS  Google Scholar 

  4. Sneller MC, Fauci AS: Pathogenesis of vasculitis syndromes. Med Clin North Am 1997, 81:221–242. This article reviews almost all the molecular events of the pathogenesis of the vasculitis.

    Article  PubMed  CAS  Google Scholar 

  5. Fierstein G, Manning M: Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum 1999, 42:609–621. This is an excellent review of the signal transduction pathways involved in inflammation and cell transformation and their relationship to rheumatic diseases.

    Article  Google Scholar 

  6. Touw IP, De Koning JP, Ward AC, Hermans MH: Signaling mechanisms of cytokine receptors and their perturbances in disease. Mol Cell Endocrinol 2000, 160:1–9. This article is a correlation between cytokines, cytokine receptors, signaling pathways, transcription factors, and diseases.

    Article  PubMed  CAS  Google Scholar 

  7. Wurster AL, Tanaka T, Grusby MJ: The biology of Stat 4 and Stat 6. Oncogene 2000, 19:2577–2584.

    Article  PubMed  CAS  Google Scholar 

  8. Takeda K, Akira S: STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factors Rev 2000, 11:199–207.

    Article  CAS  Google Scholar 

  9. Yasukawa H, Sasaki A, Yoshimura A: Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000, 18:143–164.

    Article  PubMed  CAS  Google Scholar 

  10. Genin P, Algarte M, Roof P, et al.: Regulation of RANTES chemokine gene expression requires cooperatively between NF-κB and IFN-regulatory factor transcription factors. J Immunol 2000, 164:5352–5361.

    PubMed  CAS  Google Scholar 

  11. Tomita N, Morishita R, Tomita S, et al.: Transcription factor decoy for NF kappa B inhibits TNF-alpha-induced cytokine and adhesion molecule expression in vivo. Gene Ther 2000, 7:1326–1332.

    Article  PubMed  CAS  Google Scholar 

  12. Abraham E: NF-kappa B activation. Crit Care Med 2000, 28:N100–104.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson DR, Hauser IA, Voll RE, et al.: Arterial and venular endothelial cell costimulation of cytokine secretion by human T cell clones. J Leukoc Biol 1998, 63:612–619.

    PubMed  CAS  Google Scholar 

  14. Bratt J, Palmblad J: Cytokine-induce neutrophil-mediated injury of human endothelial cells. J Immunol 1997, 159:912–918.

    PubMed  CAS  Google Scholar 

  15. Kaiser M, Younge B, Bjornsson J, et al.: Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am J Pathol 1999, 155:765–774.

    PubMed  CAS  Google Scholar 

  16. Tomer Y, Barak V, Gilburd B, Shoenfeld Y: Cytokines in experimental autoimmune vasculitis: Evidence for Th2 type response. Clin Exp Rheumatol 1999, 17:521–526.

    PubMed  CAS  Google Scholar 

  17. Cohen Tervaert JW, Kallenberg CG: Cell adhesion molecules in vasculitis. Curr Opin Rheumatol 1997, 9:16–25.

    Article  Google Scholar 

  18. Janeway CA, Travers P: Lymphocyte migration, activation, and effector function depend on cell-adhesion molecules. In Immunobiology, edn 3. Chapter 7. 1997.

  19. Sundy JS, Hayne BF: Cytokine and adhesion molecules in the pathogenesis of vasculitis. Curr Rheumatol Rep 2000, 2:402–410.

    PubMed  CAS  Google Scholar 

  20. Nathan C, Srimal S, Farber C, et al.: Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989, 109:1341–1349.

    Article  PubMed  CAS  Google Scholar 

  21. Weber KS, Nelson PJ, Grone HJ, Weber C: Expression of CCR2 by endothelial cells: Implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 1999, 19:2085–2093.

    PubMed  CAS  Google Scholar 

  22. Harari OA, Wickham TJ, Stocker CJ, et al.: Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther 1999, 6:801–807.

    Article  PubMed  CAS  Google Scholar 

  23. Lentsch AB, Ward PA: Regulation of inflammatory vascular damage. J Pathol 2000, 190:343–348. This article describes the cascade of events that follow the endothelial cell injury.

    Article  PubMed  CAS  Google Scholar 

  24. Lockwood CM, Elliott JD, Brettman L, et al.: Anti-adhesion molecule therapy as an interventional strategy. Clin Immunol 1999, 93:93–106.

    Article  PubMed  CAS  Google Scholar 

  25. Belizna C, Tervaert JW: Specificity, pathogenecity, and clinical value of antiendothelial cell antibodies. Semin Arthritis Rheum 1997, 27:98–109.

    Article  PubMed  CAS  Google Scholar 

  26. Direskeneli H, D’Cruz D, Khamashta MA, Hughes GR: Autoantibodies against endothelial cells, extracellular matrix, and human collagen type IV in patients with systemic vasculitis. Clin Immunol Immunopathol 1994, 70:206–210.

    Article  PubMed  CAS  Google Scholar 

  27. Taneja V, David CS: HLA class II transgenic mice as models of human diseases. Immunol Rev 1999, 169:67–79.

    Article  PubMed  CAS  Google Scholar 

  28. Blockmans D, Bobbaers H: [Inflammation phenomena in vasculitis: From immune complexes to less immune forms]. Acta Clin Belg 1998, 53:83–91.

    PubMed  CAS  Google Scholar 

  29. Pan LF, Kreisle RA, Shi YD: Detection of Fc_ receptors n human endothelial cells stimulated with cytokines TNF-_ and IFN-_. Clin Exp Immunol 1998, 112:533–538.

    Article  PubMed  CAS  Google Scholar 

  30. Belmont HM, Abramson SB, Lie JT: Review: pathology and pathogenesis of vascular injury in systemic lupus erythematosus. Arthritis Rheum 1996, 39:7–23.

    Article  Google Scholar 

  31. Csernok E, Muller A, Gross WL: Immunopathology of ANCAassociated vasculitis. Intern Med 1999, 38:759–765.

    PubMed  CAS  Google Scholar 

  32. Ludviksson BR, Sneller MC, Chua KS, et al.: Active Wegener’s granulomatosis is associated with HLA-DR+CD4+T cell cytokine pattern: reversal with IL-10. J Immunol 1998, 160:3602–3609.

    PubMed  CAS  Google Scholar 

  33. Rastaldi MP, Ferrario F, Tunesi S, et al.: Intraglomerular and interstitial leukocyte infiltration, adhesion molecules, and IL-1 alpha expression in 15 cases of antineutrophil cytoplasmic autoantibody-associated renal vasculitis. Am J Kidney Dis 1996, 27:48–58.

    PubMed  CAS  Google Scholar 

  34. Radford DJ, Lord JM, Savage CO: The activation of neutrophil respiratory burst by anti-neutrophil cytoplasm autoantibody (ANCA) from patients with systemic vasculitis requires tyrosine kinase and protein kinase C activation. Clin Exp Immunol 1999, 118:171–179.

    Article  PubMed  CAS  Google Scholar 

  35. Kettritz R, Jennette JC, Falk RJ: Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils. J Am Soc Nephrol 1997, 8:386–394.

    PubMed  CAS  Google Scholar 

  36. Tommer I: Anti-neutrophil cytoplasmic antibody-enriched IgG induces adhesion of human T lymphocytes to extracellular matrix proteins. Clin Immunol Immunopathol 1997, 83:245–253.

    Article  Google Scholar 

  37. Kettritz R, Schreiber A, Friederich C, et al.: Role of mitogenactivated protein kinases in activation of human neutrophils by antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 2001, 12:37–46.

    PubMed  CAS  Google Scholar 

  38. Kallenberg CG, Brouwer E, Weening JJ, Tervaert JW: Anti-neutrophil cytoplasmatic antibodies: current diagnostic and pathophysiological potential. Kidney Int 1994, 46:1–15.

    Article  PubMed  CAS  Google Scholar 

  39. Gencik M, Meller S, Borgman S, et al.: The association of CD18 alleles with anti-myeloperoxidase subtypes of ANCA-associated systemic vasculitides. Clin Immunol 2000, 94:9–12.

    Article  PubMed  CAS  Google Scholar 

  40. Csernok E, Trabandt A, Gross WL: Immunopathogenetic aspects of ANCA-associated vasculitides. Clin Exp Immunogenet 1997, 14:177–182.

    CAS  Google Scholar 

  41. Harper L, Savage CO: Pathogenesis of ANCA-associated vasculitis. J Pathol 2000, 190:349–359.

    Article  PubMed  CAS  Google Scholar 

  42. Schultz DR, Diego JM: Antineutrophil cytoplasmatic antibodies (ANCA) and systemic vasculitis: update of assays, immunopathogenesis, controversies, and report of a novel de novo ANCA-associated vasculitis after kidney transplantation. Semin Arthritis Rheum 2000, 29:267–285.

    Article  PubMed  CAS  Google Scholar 

  43. Ralston DR, Marsh CL, Lowe MP, et al.: Antineutrophil cytoplasmatic antibodies induce monocyte IL-8 release: role of surface proteinase-3, alpha1-antitrypsin, and Fc gamma receptors. J Clin Invest 1997, 100:1416–1424.

    PubMed  CAS  Google Scholar 

  44. Bajema IM, Hagen EC: Evolving concepts about the role of antineutrophil cytoplasmatic autoantibodies in systemic vasculitides. Curr Opin Rheumatol 1999, 11:34–40.

    Article  PubMed  CAS  Google Scholar 

  45. Yonemitsu Y, Komori K, Sueishi K, et al.: Possible role of cytomegalovirus infection in the pathogenesis of human vascular disease. Jpn J Clin Med 1998, 56:102–108.

    CAS  Google Scholar 

  46. Dal Canto AJ, Virgin HW 4th: Animal models of infectionmediated vasculitis: Implications for human disease. Int J Cardiol 2000, 75:S37–45, discussion S47-52.

    Article  Google Scholar 

  47. Dal Canto AJ, Virgin HW 4th: Animal models of infectionmediated vasculitis: implications for human disease. Curr Opin Rheumatol 1999, 11:17–23.

    Article  Google Scholar 

  48. Cacoub P, Renou C, Rosenthal E, et al.: Extrahepatic manifestations associated with Hepatitis C virus infection. A prospective multicentric study of 321 patients. Medicine 2000, 79:47–56.

    Article  PubMed  CAS  Google Scholar 

  49. Miyazawa M, Tabata N, Fujisawa R, et al.: Roles of endogenous retroviruses and platelets in the development of vascular injury in spontaneous mouse models of autoimmune diseases. Int J Cardiol 2000, 75:S65–73, discussion S75-76.

    Article  PubMed  Google Scholar 

  50. St Clair EW, McCallum RM: Cogan’s syndrome. Curr Opin Rheumatol 1999, 11:47–52.

    Article  PubMed  CAS  Google Scholar 

  51. Behar S, Porcelli SA: Review: mechanisms of autoimmune disease induction: the role of the immune response to microbial pathogens. Arthritis Rheum 1995, 38:458–476. This review provides some explanations about the close correlation that exist between microbial infection and the triggering of an autoimmune disease.

    Article  PubMed  CAS  Google Scholar 

  52. Cohen Tervaert JW, Popa ER, Bos NA: The role of superantigens in vasculitis. Curr Opin Rheumatol 1999, 11:24–33.

    Article  Google Scholar 

  53. Nose M, Terada M, Nishihara M, et al.: Vasculitis-susceptible genes in mice with a deficit in Fas-mediated apoptosis. Int J Cardiol 1998, 66:S37–41.

    Article  PubMed  Google Scholar 

  54. Siegel RM, Fleisher TA: The role of Fas and related death receptors in autoimmune and other disease states. J Allergy Clin Immunol 1999, 103:729–738.

    Article  PubMed  CAS  Google Scholar 

  55. Georgescu L, Vakkalanka RK, Elkon KB, Crow MK: Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. J Clin Invest 1997, 100:2622–2633.

    Article  PubMed  CAS  Google Scholar 

  56. Yeh WC, Hakem R, Woo M, Mak TW: Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signal. Immunol Rev 1999, 169:283–302.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuchacovich, R. Immunopathogenesis of vasculitis. Curr Rheumatol Rep 4, 9–17 (2002). https://doi.org/10.1007/s11926-002-0018-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0018-9

Keywords

Navigation