Skip to main content

Advertisement

Log in

Biomarkers of Bipolar Disorder in Late Life: An Evidence-Based Systematic Review

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Review the current evidence on biomarkers for bipolar disorder in the older adults. We conducted a systematic search of PubMed MEDLINE, PsycINFO, and Web of Science databases using the MeSH search terms "Biomarkers", "Bipolar Disorder", "Aged" and and “Aged, 80 and over”. Studies were included if they met the following criteria: (1) the mean age of the study population was 50 years old or older, (2) the study included patients with bipolar disorder, and (3) the study examined one type of biomarkers or more including genetic, neuroimaging, and biochemical biomarkers. Reviews, case reports, studies not in English and studies for which no full text was available were excluded. A total of 26 papers were included in the final analysis.

Recent Findings

Genomic markers of bipolar disorder in older adults highlighted the implication of serotonin metabolism, while the expression of genes involved in angiogenesis was dysregulated. Peripheral blood markers were mainly related with low grade inflammation, axonal damage, endothelial dysfunction, and the dysregulation of the HPA axis. Neuroanatomical markers reflected a dysfunction of the frontal cortex, a loss of neurones in the anterior cingulate cortex and a reduction of the hippocampal volume (in patients older than 50 years old). While not necessarily limited to older adults, some of them may be useful for differential diagnosis (neurofilaments), disease staging (homocysteine, BDNF) and the monitoring of treatment outcomes (matrix metalloproteinases).

Summary

Our review provides a comprehensive overview of the current evidence on biomarkers for bipolar disorder in the older adults. The identification of biomarkers may aid in the diagnosis, treatment selection, and monitoring of bipolar disorder in older adults, ultimately leading to improved outcomes for this population. Further research is needed to validate and further explore the potential clinical utility of biomarkers in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kessler RC, et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593–602. https://doi.org/10.1001/archpsyc.62.6.593.

    Article  PubMed  Google Scholar 

  2. Kessler RC, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617–27. https://doi.org/10.1001/archpsyc.62.6.617.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Arnold I, Dehning J, Grunze A, Hausmann A. Old age bipolar disorder-epidemiology, aetiology and treatment. Medicina (Kaunas). 2021;57(6):587. https://doi.org/10.3390/medicina57060587. PMID: 34201098; PMCID: PMC8226928. This review highlights the specificities of OABD and the implications for treatment.

  4. Depp CA, et al. Bipolar disorder in middle-aged and elderly adults: is age of onset important? J Nerv Ment Dis. 2004;192(11):796–9. https://doi.org/10.1097/01.nmd.0000145055.45944.d6.

    Article  PubMed  Google Scholar 

  5. Lavin P, Buck G, Almeida OP, Su CL, Eyler LT, Dols A, Blumberg HP, Forester BP, Forlenza OV, Gildengers A, Mulsant BH, Tsai SY, Vieta E, Schouws S, Briggs FBS, Sutherland A, Sarna K, Yala J, Orhan M, Korten N, Sajatovic M, Rej S, GAGE-BD Investigators. Clinical correlates of late-onset versus early-onset bipolar disorder in a global sample of older adults. Int J Geriatr Psychiatry. 2022;37(12). https://doi.org/10.1002/gps.5833. Epub ahead of print. PMID: 36317317.

  6. Maia da Silva MN, Porto FHG, Lopes PMG, Sodré de Castro Prado C, Frota NAF, Alves CHL, Alves GS. Frontotemporal dementia and late-onset bipolar disorder: the many directions of a busy road. Front Psychiatry. 2021;12:768722. https://doi.org/10.3389/fpsyt.2021.768722. PMID: 34925096; PMCID: PMC8674641.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barbosa IG, Bauer ME, Teixeira AL. Chapter 12 - Neuroimmune pathways in bipolar disorder. In: Machado-Vieira R, Soares JC, editors. Biomarkers in bipolar disorders. Academic Press; 2022. p. 191–214. https://doi.org/10.1016/B978-0-12-821398-8.00003-5. ISBN 9780128213988.

    Chapter  Google Scholar 

  8. •• Teixeira AL, et al. Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother. 2019;19(1):67–81. https://doi.org/10.1080/14737175.2019.1550361. This review assesses the current status of biomarkers for bipolar disorder in the general population.

    Article  CAS  PubMed  Google Scholar 

  9. Craddock N, Sklar P. Genetics of bipolar disorder. Lancet. 2013;381(9878):1654–62. https://doi.org/10.1016/S0140-6736(13)60855-7.

    Article  CAS  PubMed  Google Scholar 

  10. Medeiros GC, Goes FS. Chapter 8 - Genome-wide association study biomarkers in bipolar disorder. In: Machado-Vieira R, Soares JC, editors. Biomarkers in bipolar disorders. Academic Press; 2022. p. 125–39. https://doi.org/10.1016/B978-0-12-821398-8.00016-3. ISBN 9780128213988.

    Chapter  Google Scholar 

  11. Grewal S, et al. Biomarkers of neuroprogression and late staging in bipolar disorder: A systematic review. Aust N Z J Psychiatry. 2023;57(3):328–43. https://doi.org/10.1177/00048674221091731.

    Article  PubMed  Google Scholar 

  12. Camkurt MA, Mwangi B, Sanches M, Soares JC. Chapter 5 - Structural neuroimaging markers in bipolar disorder. In: Machado-Vieira R, Soares JC, editors. Biomarkers in bipolar disorders. Academic Press; 2022. p. 81–93. https://doi.org/10.1016/B978-0-12-821398-8.00019-9. ISBN 9780128213988.

    Chapter  Google Scholar 

  13. Vecera CM, Chong AC, Ruiz AC, Rong C, Jones G, Machado-Vieira R, Soares JC. Chapter 6 - Magnetic resonance spectroscopy in bipolar disorder. In: Machado-Vieira R, Soares JC, editors. Biomarkers in bipolar disorders. Academic Press; 2022. p. 95–113. https://doi.org/10.1016/B978-0-12-821398-8.00030-8. ISBN 9780128213988.

    Chapter  Google Scholar 

  14. Birur B, et al. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15. https://doi.org/10.1038/s41537-017-0013-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lala SV, Sajatovic M. Medical and psychiatric comorbidities among elderly individuals with bipolar disorder: a literature review. J Geriatr Psychiatry Neurol. 2012;25(1):20–5. https://doi.org/10.1177/0891988712436683.

    Article  PubMed  Google Scholar 

  16. Daban C, et al. Specificity of cognitive deficits in bipolar disorder versus schizophrenia. A systematic review Psychother Psychosom. 2006;75(2):72–84. https://doi.org/10.1159/000090891.

    Article  PubMed  Google Scholar 

  17. Krabbendam L, et al. Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophr Res. 2005;80(2–3):137–49. https://doi.org/10.1016/j.schres.2005.08.004.

    Article  PubMed  Google Scholar 

  18. Moher D, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. https://doi.org/10.1186/2046-4053-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wirsching J, et al. Development and reliability assessment of a new quality appraisal tool for cross-sectional studies using biomarker data (BIOCROSS). BMC Med Res Methodol. 2018;18(1):122. https://doi.org/10.1186/s12874-018-0583-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van Den Bogaert A, et al. Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch Gen Psychiatry. 2006;63(10):1103–10. https://doi.org/10.1001/archpsyc.63.10.1103.

    Article  PubMed  Google Scholar 

  21. Altamura AC, Buoli M, Pozzoli S. Role of immunological factors in the pathophysiology and diagnosis of bipolar disorder: comparison with schizophrenia. Psychiatry Clin Neurosci. 2014;68(1):21–36. https://doi.org/10.1111/pcn.12089.

    Article  CAS  PubMed  Google Scholar 

  22. Kato T, et al. Gene expression analysis in lymphoblastoid cells as a potential biomarker of bipolar disorder. J Hum Genet. 2011;56(11):779–83. https://doi.org/10.1038/jhg.2011.101.

    Article  CAS  PubMed  Google Scholar 

  23. Hattori E, et al. Preliminary genome-wide association study of bipolar disorder in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(8):1110–7. https://doi.org/10.1002/ajmg.b.30941.

    Article  CAS  PubMed  Google Scholar 

  24. Luykx JJ, Giuliani F, Giuliani G, Veldink J. Coding and non-coding RNA abnormalities in bipolar disorder. Genes (Basel). 2019;10(11):946. https://doi.org/10.3390/genes10110946. PMID: 31752442; PMCID: PMC6895892.

    Article  CAS  PubMed  Google Scholar 

  25. Banigan MG, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8(1): e48814. https://doi.org/10.1371/journal.pone.0048814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo L, et al. Quantification of Tyrosine Hydroxylase and ErbB4 in the Locus Coeruleus of Mood Disorder Patients Using a Multispectral Method to Prevent Interference with Immunocytochemical Signals by Neuromelanin. Neurosci Bull. 2019;35(2):205–15. https://doi.org/10.1007/s12264-019-00339-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbosa IG, Rocha NP, Huguet RB, Ferreira RA, Salgado JV, Carvalho LA, Pariante CM, Teixeira AL. Executive dysfunction in euthymic bipolar disorder patients and its association with plasma biomarkers. J Affect Disord. 2012;137(1–3):151–5. https://doi.org/10.1016/j.jad.2011.12.034. Epub 2012 Jan 16. PMID: 22252095.

    Article  CAS  PubMed  Google Scholar 

  28. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR, Yang SH. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;22(5):2719. https://doi.org/10.3390/ijms22052719. PMID: 33800290; PMCID: PMC7962638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbosa IG, Rocha NP, Huebra L, Oliveira C, Nobre V, Teixeira AL. Notall inflammatory biomarkers are elevated in bipolar disorder: evidence forprocalcitonin. Biol Psychiatry. 2013;74(10):e29–30. https://doi.org/10.1016/j.biopsych.2013.03.010. Epub 2013 Apr 17. PMID: 23601849.

    Article  CAS  PubMed  Google Scholar 

  30. Traverse S, et al. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr Biol. 1994;4(8):694–701. https://doi.org/10.1016/s0960-9822(00)00154-8.

    Article  CAS  PubMed  Google Scholar 

  31. Skibinska M, Kapelski P, Dmitrzak-Weglarz M, Lepczynska N, Pawlak J, Twarowska-Hauser J, Szczepankiewicz A, Rajewska-Rager A. Elevated epidermal growth factor (EGF) as candidate biomarker of mood disorders-longitudinal study in adolescent and young adult patients. J Clin Med. 2021;10(18):4064. https://doi.org/10.3390/jcm10184064. PMID: 34575175; PMCID: PMC8468978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berk M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17. https://doi.org/10.1016/j.neubiorev.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  33. Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians. 1999;111(5):383–9. https://doi.org/10.1111/paa.1999.111.5.383. PMID: 10519157.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamori H, et al. Assessment of a multi-assay biological diagnostic test for mood disorders in a Japanese population. Neurosci Lett. 2016;612:167–71. https://doi.org/10.1016/j.neulet.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  35. Johnson LL, Dyer R, Hupe DJ. Matrix metalloproteinases. Curr Opin Chem Biol. 1998;2(4):466–71. https://doi.org/10.1016/s1367-5931(98)80122-1. PMID: 9736919.

    Article  CAS  PubMed  Google Scholar 

  36. Nissinen L, Kahari VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 2014;1840(8):2571–80. https://doi.org/10.1016/j.bbagen.2014.03.007.

    Article  CAS  PubMed  Google Scholar 

  37. Shibasaki C, Itagaki K, Abe H, Kajitani N, Okada-Tsuchioka M, Takebayashi M. Possible association between serum matrix metalloproteinase-9 (MMP-9) levels and relapse in depressed patients following electroconvulsive therapy (ECT). Int J Neuropsychopharmacol. 2018;21(3):236–41. https://doi.org/10.1093/ijnp/pyx086. PMID: 29025075; PMCID: PMC5838816.

    Article  CAS  PubMed  Google Scholar 

  38. Kranaster L, Hellweg R, Sartorius A. Association between the novel seizure quality index for the outcome prediction in electroconvulsive therapy and brain-derived neurotrophic factor serum levels. Neurosci Lett. 2019;704:164–8. https://doi.org/10.1016/j.neulet.2019.04.023. Epub 2019 Apr 9. PMID: 30978454.

    Article  CAS  PubMed  Google Scholar 

  39. Grande I, et al. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig. 2010;7(4):243–50. https://doi.org/10.4306/pi.2010.7.4.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lapchak PA, Araujo DM, Hefti F. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience. 1993;53(2):297–301. https://doi.org/10.1016/0306-4522(93)90196-m.

    Article  CAS  PubMed  Google Scholar 

  41. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414.

    Article  CAS  PubMed  Google Scholar 

  42. De Marchis GM, et al. Serum neurofilament light chain in patients with acute cerebrovascular events. Eur J Neurol. 2018;25(3):562–8. https://doi.org/10.1111/ene.13554.

    Article  MathSciNet  PubMed  Google Scholar 

  43. Rohrer JD, et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology. 2016;87(13):1329–36. https://doi.org/10.1212/WNL.0000000000003154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katisko K, Cajanus A, Jääskeläinen O, Kontkanen A, Hartikainen P, Korhonen VE, Helisalmi S, Haapasalo A, Koivumaa-Honkanen H, Herukka SK, Remes AM, Solje E. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J Neurol. 2020;267(1):162–7. https://doi.org/10.1007/s00415-019-09567-8. Epub 2019 Oct 8. PMID: 31595378; PMCID: PMC6954884.

    Article  CAS  PubMed  Google Scholar 

  45. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14(1):6. https://doi.org/10.1186/1475-2891-14-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tamashiro JH, et al. Increased rates of white matter hyperintensities in late-onset bipolar disorder. Bipolar Disord. 2008;10(7):765–75. https://doi.org/10.1111/j.1399-5618.2008.00621.x.

    Article  PubMed  Google Scholar 

  47. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6. PMID: 1202204.

    Article  CAS  PubMed  Google Scholar 

  48. Chen PH, Liu HC, Lu ML, Chen CH, Chang CJ, Chiu WC, Sun IW, Liu SI, Tsai SY, Chiu CC, Stewart R. Homocysteine, rather than age of onset, is a better predictor for cognitive function in older adults with bipolar disorder. Int J Geriatr Psychiatry. 2019;34(10):1473–80. https://doi.org/10.1002/gps.5156. Epub 2019 Jun 11. PMID: 31111977.

    Article  PubMed  Google Scholar 

  49. Kaufman AS. Test review: Wechsler, D. Manual for the Wechsler adult intelligence scale, revised. New York: Psychological Corporation, 1981. J Psychoeduc Assess. 1983;1(3):309–13. https://doi.org/10.1177/073428298300100310.

    Article  Google Scholar 

  50. Permoda-Osip A, et al. Homocysteine and cognitive functions in bipolar depression. Psychiatr Pol. 2014;48(6):1117–26. https://doi.org/10.12740/PP/31394.

    Article  PubMed  Google Scholar 

  51. Permoda-Osip A, et al. Hyperhomocysteinemia in bipolar depression: clinical and biochemical correlates. Neuropsychobiology. 2013;68(4):193–6. https://doi.org/10.1159/000355292.

    Article  CAS  PubMed  Google Scholar 

  52. Haraldsen G, et al. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol. 1996;156(7):2558–65.

    Article  CAS  PubMed  Google Scholar 

  53. Bedson E, Bell D, Carr D, Carter B, Hughes D, Jorgensen A, Lewis H, Lloyd K, McCaddon A, Moat S, Pink J, Pirmohamed M, Roberts S, Russell I, Sylvestre Y, Tranter R, Whitaker R, Wilkinson C, Williams N. Folate Augmentation of Treatment-Evaluation for Depression (FolATED): randomised trial and economic evaluation. Health Technol Assess. 2014;18(48):vii–viii, 1–159. https://doi.org/10.3310/hta18480. PMID: 25052890; PMCID: PMC4780991.

  54. Venkatasubramanian R, Kumar CN, Pandey RS. A randomized double-blind comparison of fluoxetine augmentation by high and low dosage folic acid in patients with depressive episodes. J Affect Disord. 2013;150(2):644–8. https://doi.org/10.1016/j.jad.2013.02.029.

    Article  CAS  PubMed  Google Scholar 

  55. Kate N, Grover S, Agarwal M. Does B12 deficiency lead to lack of treatment response to conventional antidepressants? Psychiatry (Edgmont). 2010;7(11):42–4. PMID: 21191533; PMCID: PMC3010969.

    PubMed  Google Scholar 

  56. Manenschijn L, Spijker AT, Koper JW, Jetten AM, Giltay EJ, Haffmans J, Hoencamp E, van Rossum EF. Long-term cortisol in bipolar disorder: associations with age of onset and psychiatric co-morbidity. Psychoneuroendocrinology. 2012;37(12):1960–8. https://doi.org/10.1016/j.psyneuen.2012.04.010. Epub 2012 May 24. PMID: 22634056.

    Article  CAS  PubMed  Google Scholar 

  57. Rybakowski JK, et al. Novel markers of kidney injury in bipolar patients on long-term lithium treatment. Hum Psychopharmacol. 2013;28(6):615–8. https://doi.org/10.1002/hup.2362.

    Article  CAS  PubMed  Google Scholar 

  58. Forlenza OV, Aprahamian I, Radanovic M, Talib LL, Camargo MZ, Stella F, Machado-Vieira R, Gattaz WF. Cognitive impairment in late-life bipolar disorder is not associated with Alzheimer’s disease pathological signature in the cerebrospinal fluid. Bipolar Disord. 2016;18(1):63–70. https://doi.org/10.1111/bdi.12360. Epub 2016 Feb 15. PMID: 26876913.

    Article  CAS  PubMed  Google Scholar 

  59. •• Rabbito A, Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Biochemical markers in Alzheimer's disease. Int J Mol Sci. 2020;21(6):1989. https://doi.org/10.3390/ijms21061989. PMID: 32183332; PMCID: PMC7139967. This paper explains the neurodegenerative processes that underlie AD and explains their link to physiopathology.

  60. Kranaster L, et al. The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid. Eur Arch Psychiatry Clin Neurosci. 2020;270(7):911–9. https://doi.org/10.1007/s00406-019-01086-x.

    Article  PubMed  Google Scholar 

  61. Kranaster L, Jennen-Steinmetz C, Sartorius A. The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid. Eur Arch Psychiatry Clin Neurosci. 2019;269(7):859–65. https://doi.org/10.1007/s00406-018-0962-7.

    Article  PubMed  Google Scholar 

  62. Sneeboer MAM, et al. Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry. 2019;9(1):153. https://doi.org/10.1038/s41398-019-0490-x.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Novikova SI, et al. Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis. 2006;23(1):61–76. https://doi.org/10.1016/j.nbd.2006.02.002.

    Article  CAS  PubMed  Google Scholar 

  64. Gray LJ, et al. Region and diagnosis-specific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res. 2010;178(2):374–80. https://doi.org/10.1016/j.psychres.2008.07.012.

    Article  CAS  PubMed  Google Scholar 

  65. Galvin JE, Lee VM-Y, Trojanowski JQ. Synucleinopathies: clinical and pathological implications. Arch Neurol. 2001;58(2):186–90.

    Article  CAS  PubMed  Google Scholar 

  66. MartÌ MJ, Tolosa E, Campdelacreu J. Clinical overview of the synucleinopathies. Movement disorders: official journal of the Movement Disorder Society. 2003;18(S6):21–7.

    Article  Google Scholar 

  67. Etain B, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry. 2010;15(7):748–55. https://doi.org/10.1038/mp.2008.148.

    Article  CAS  PubMed  Google Scholar 

  68. Brooks JO 3rd, et al. Corticolimbic metabolic dysregulation in euthymic older adults with bipolar disorder. J Psychiatr Res. 2009;43(5):497–502. https://doi.org/10.1016/j.jpsychires.2008.08.001.

    Article  PubMed  Google Scholar 

  69. Tsai SY, et al. Inflammation associated with volume reduction in the gray matter and hippocampus of older patients with bipolar disorder. J Affect Disord. 2019;244:60–6. https://doi.org/10.1016/j.jad.2018.10.093.

    Article  PubMed  Google Scholar 

  70. Mellen EJ, et al. Lamotrigine Therapy and Biomarkers of Cerebral Energy Metabolism in Older Age Bipolar Depression. Am J Geriatr Psychiatry. 2019;27(8):783–93. https://doi.org/10.1016/j.jagp.2019.02.017.

    Article  PubMed  Google Scholar 

  71. Watanabe H, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry. 2004;75(1):103–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fiedorowicz JG, et al. Vasculopathy related to manic/hypomanic symptom burden and first-generation antipsychotics in a sub-sample from the collaborative depression study. Psychother Psychosom. 2012;81(4):235–43. https://doi.org/10.1159/000334779.

    Article  PubMed  Google Scholar 

  73. Frey BN, et al. Illness duration and total brain gray matter in bipolar disorder: evidence for neurodegeneration? Eur Neuropsychopharmacol. 2008;18(10):717–22. https://doi.org/10.1016/j.euroneuro.2008.04.015.

    Article  CAS  PubMed  Google Scholar 

  74. Goldstein BI, Young LT. Toward clinically applicable biomarkers in bipolar disorder: focus on BDNF, inflammatory markers, and endothelial function. Curr Psychiatry Rep. 2013;15(12):425. https://doi.org/10.1007/s11920-013-0425-9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93. https://doi.org/10.1016/j.tics.2010.11.004.

    Article  PubMed  Google Scholar 

  76. Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci. 2011;23(2):121–5. https://doi.org/10.1176/jnp.23.2.jnp121.

    Article  PubMed  Google Scholar 

  77. Balasubramanian AB, Kawas CH, Peltz CB, Brookmeyer R, Corrada MM. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology. 2012;79(9):915–21. https://doi.org/10.1212/WNL.0b013e318266fc77. Epub 2012 Aug 15. PMID: 22895581; PMCID: PMC3425842.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen MH, Li CT, Tsai CF, Lin WC, Chang WH, Chen TJ, Pan TL, Su TP, Bai YM. Risk of subsequent dementia among patients with bipolar disorder or major depression: a nationwide longitudinal study in Taiwan. J Am Med Dir Assoc. 2015;16(6):504–8. https://doi.org/10.1016/j.jamda.2015.01.084. Epub 2015 Feb 27. PMID: 25737262.

    Article  PubMed  Google Scholar 

  79. Gigase FAJ, et al. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry. 2023;28(4):1502–15. https://doi.org/10.1038/s41380-023-01976-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Conejero.

Ethics declarations

Conflict of Interest

R. Chancel, J. Lopez-Castroman, E. Baca-Garcia, R. Mateos Alvarez, Ph. Courtet, and I. Conejero each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The editors would like to thank Dr. Raffaella Calati for taking the time to review this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chancel, R., Lopez-Castroman, J., Baca-Garcia, E. et al. Biomarkers of Bipolar Disorder in Late Life: An Evidence-Based Systematic Review. Curr Psychiatry Rep 26, 78–103 (2024). https://doi.org/10.1007/s11920-024-01483-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-024-01483-7

Keywords

Navigation