Skip to main content
Log in

How Sleep Research in Extreme Environments Can Inform the Military: Advocating for a Transactional Model of Sleep Adaptation

  • MILITARY MENTAL HEALTH (VF CAPALDI, II, SECTION EDITOR)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We review the literature on sleep in extreme environments. Accordingly, we present a model that identifies the need for mitigating interventions to preserve sleep quality for military deployments.

Recent Findings

Situational factors that affect sleep in extreme environments include cold temperatures, isolated and confined areas, fluctuating seasonality, photoperiodicity, and extreme latitudes and altitudes. Results vary across studies, but general effects include decreased total sleep time, poor sleep efficiency, and non-specific phase delays or phase advances in sleep onset and sleep architecture. Considering habitability measures (e.g., light or temperature control) and individual differences such as variable stress responses or sleep need can mitigate these effects to improve mood, cognition, and operational performance.

Summary

Although the situational demands during military missions inevitably reduce total sleep time and sleep efficiency, mitigating factors can attenuate sleep-related impairments, hence allowing for optimal mission success and personnel safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Castillo M. The 3 pillars of health. AJNR Am J Neuroradiol. 2015;36(1):1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaput J-P, Yao J, Rao DP, Morin C. Prevalence of insomnia for Canadians aged 6 to 79. StatCan Health Rep. 2018;29(12):16–20.

    Google Scholar 

  3. Mantua J, Bessey A, Sowden WJ, Chabuz R, Brager AJ, Capaldi VF, et al. A review of environmental barriers to obtaining adequate sleep in the military operational context. Mil Med. 2019;184(7–8):e259–66.

    Article  PubMed  Google Scholar 

  4. Good CH, Brager AJ, Capaldi VF, Mysliwiec V. Sleep in the United States military. Neuropsychopharmacol. 2020;45(1):176–91.

    Article  Google Scholar 

  5. Zivi P, De Gennaro L, Ferlazzo F. Sleep in isolated, confined, and extreme (ICE): A review on the different factors affecting human sleep in ICE. Front Neurosci. 2020;14:851.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernhardt KA, Kelley AM, Feltman KA, Curry IP. Rest and activity patterns of army aviators in routine and operational training environments. Aerosp Med Hum Perform. 2019;90(1):48–52.

    Article  PubMed  Google Scholar 

  7. Harrison E, Glickman GL, Beckerley S, Taylor MK. Self-reported sleep during U.S. Navy operations and the impact of deployment-related factors. Mil Med. 2017;182(S1):189–94.

    Article  PubMed  Google Scholar 

  8. Troxel WM, Shih RA, Pedersen E, Geyer L, Fisher MP. Sleep in the military. Santa Monica, CA: RAND; 2015. 280 p.

  9. Mysliwiec V, McGraw L, Pierce R, Smith P, Trapp B, Roth BJ. Sleep disorders and associated medical comorbidities in active duty military personnel. Sleep. 2013;36(2):167–74.

    Article  PubMed  PubMed Central  Google Scholar 

  10. •• Miller NL, Tvaryanas AP, Shattuck LG. Accommodating adolescent sleep-wake patterns: The effects of shifting the timing of sleep on training effectiveness. Sleep. 2012;35(8):1123–36. This study applied theoretical knowledge to military field training by adapting the schedule of basic combat training to better suit the natural circadian rhythm of post-adolescents through phase delay. Specifically, the authors compared one group following the usual schedule, whereby nighttime occurred between 20.30 and 04.30, with another a group obtaining scheduled rest from 23.00 to 07.00. Those in the adapted schedule demonstrated positive results in total sleep time, mood and marksmanship.

    PubMed  PubMed Central  Google Scholar 

  11. Kanas N, Manzey D. Space psychology and psychiatry: Springer Dordrecht; 2003. 240 p.

  12. Buguet A. Sleep under extreme environments: Effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci. 2007;262(1–2):145–52.

    Article  PubMed  Google Scholar 

  13. Bartone PT, Krueger GP, Bartone JV. Individual differences in adaptability to isolated, confined, and extreme environments. Aerosp Med Hum Perform. 2018;89(6):536–46.

    Article  PubMed  Google Scholar 

  14. Pattyn N, Van Puyvelde M, Fernandez-Tellez H, Roelands B, Mairesse O. From the midnight sun to the longest night: Sleep in Antarctica. Sleep Med Rev. 2018;37:159–72.

    Article  PubMed  Google Scholar 

  15. • Mairesse O, MacDonald-Nethercott E, Neu D, Tellez HF, Dessy E, Neyt X, et al. Preparing for Mars: Human sleep and performance during a 13 month stay in Antarctica. Sleep. 2019;42(1):1–12. Collected objective and subjective sleep assessment, as well as psychomotor vigilance behavioral performance, every 6 weeks during a 13-month Mars analog in Antarctica (n = 13). While sleep latencies and severe periodic breathing were observed effects of the ICE environment, the authors highlight the importance of interindividual variability in sleep traits across prolonged periods of ICE environments.

  16. • Lane JM, Qian J, Mignot E, Redline S, Scheer F, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet. 2022;24(1):4–20. A review of sleep and circadian rhythms from a genetics standpoint, through coverage of the time course of scientific knowledge in sleep and circadian rhythm genetics, and the application of knowledge to human health and sleep and circadian rhythm disorders. The authors are attentive to phenotyping from subjective compared to objective measures, as well as interindividual variability and genetic interactions with the environment.

  17. Van Puyvelde M, Mairesse O. Do C-tactile afferents go to sleep? A potential role for somatosensory stimulation in sleep regulation. Curr Opin Behav Sci. 2022;43:62–8.

    Article  Google Scholar 

  18. Sandal GM, Leon GR, Palinkas L. Human challenges in polar and space environments. Rev Environ Sci Biotechnol. 2006;5(2–3):281–96.

    Article  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alpatov AM. Circadian rhythms in a long-term duration space flight. Adv Space Res. 1992;12(1):249–52.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson H, Chambers MMC, Myhre G, Nicholson AN, Stone BM. Sleep of shiftworkers within the Arctic Circle. Aviat Space Environ Med. 1984;55:1026–30.

    CAS  PubMed  Google Scholar 

  22. Aschoff J. Estimates on the duration of sleep and wakefulness made in isolation. Chronobiol Int. 1992;9(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Ariznavarreta C, Cardinali DP, Villanua MA, Granados B, Martin M, Chiesa JJ, et al. Circadian rhythms in airline pilots submitted to long-haul transmeridian flights. Aviat Space Environ Med. 2002;73(5):445–55.

    CAS  PubMed  Google Scholar 

  24. Bhargava R, Mukerji S, Sachdeva U. Psychological impact for the Antarctic winter of Indian expeditioners. Environ Behav. 2000;32(1):111–27.

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharyya M, Pal MS, Sharma YK, Majumdar D. Changes in sleep patterns during prolonged stays in Antarctica. Int J Biometeorol. 2008;52(8):869–79.

    Article  PubMed  Google Scholar 

  26. de Blasiis K, Mauvieux B, Elsworth-Edelsten C, Pezé T, Jouffroy R, Hurdiel R. Photoperiod impact on a sailor’s sleep-wake rhythm and core body temperature in polar environment. Wilderness Environ Med. 2019;30(4):343–50.

    Article  PubMed  Google Scholar 

  27. Booker JM, Hellekson CJ, Putilov AA, Danilenko KV. Seasonal depression and sleep disturbances in Alaska and Siberia: A pilot study. Arctic Med Res. 1991;Suppl:281–4.

  28. Borisenkov MF. The pattern of entrainment of the human sleep-wake rhythm by the natural photoperiod in the north. Chronobiol Int. 2011;28(10):921–9.

    Article  PubMed  Google Scholar 

  29. Bratlid T, Wahlund B. Alterations in serum melatonin and sleep in individuals in a sub-arctic region from winter to spring. Int J Circumpolar Health. 2016;62(3):242–54.

    Article  Google Scholar 

  30. Brockmann PE, Gozal D, Villarroel L, Damiani F, Nuñez F, Cajochen C. Geographic latitude and sleep duration: A population-based survey from the Tropic of Capricorn to the Antarctic Circle. Chronobiol Int. 2017;34(3):373–81.

    Article  PubMed  Google Scholar 

  31. Buguet AGC. Cold-induced bradycardia in man during sleep in Arctic winter nights. Int J Biometeor. 1987;31(1):21–31.

    Article  CAS  Google Scholar 

  32. Buguet A, Rivolier J, Jouvet M. Human sleep patterns in Antarctica. Sleep. 1987;10(4):374–82.

    Article  CAS  PubMed  Google Scholar 

  33. Buguet AGC, Livingstone SD, Reed LD, Limmer RE. EEG patterns and body temperatures in man during sleep in Arctic winter nights. Int J Biometeor. 1976;20(1):61–9.

    Article  CAS  Google Scholar 

  34. Caldwell JA, Gilreath SR. A survey of aircrew fatigue in a sample of U.S. Army aviation personnel. Aviat Space Environ Med. 2002;73(5):472–80.

    PubMed  Google Scholar 

  35. Chandrashekaran K, Marimuthu G, Geetha L. Correlations between sleep and wake in internally synchronized and desynchronized circadian rhythms in humans under prolonged isolation. J Biol Rhythms. 1997;12(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  36. Chen N, Wu Q, Xiong Y, Chen G, Song D, Xu C. Circadian rhythm and sleep during prolonged Antarctic residence at Chinese Zhongshan station. Wilderness Environ Med. 2016;27(4):458–67.

    Article  PubMed  Google Scholar 

  37. Chen H, Lv K, Ji G, Liu Z, Guo J, Wan Y, et al. Characterization of sleep-wake patterns in crew members under a short-duration spaceflight. Biol Rhythm Res. 2020;51(3):392–407.

    Article  Google Scholar 

  38. Collet G, Mairesse O, Cortoos A, Tellez HF, Neyt X, Peigneux P, et al. Altitude and seasonality impact on sleep in Antarctica. Aerosp Med Hum Perform. 2015;86(4):392–6.

    Article  PubMed  Google Scholar 

  39. Corbett RW, Middleton B, Arendt J. An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter. Neurosci Lett. 2012;525(2):146–51.

    Article  CAS  PubMed  Google Scholar 

  40. Danilenko KV, Kobelev E, Semenova EA, Aftanas LI. Summer-winter difference in 24-h melatonin rhythms in subjects on a 5-workdays schedule in Siberia without daylight saving time transitions. Physiol Behav. 2019;212:112686.

    Article  CAS  PubMed  Google Scholar 

  41. Danilenko KV, Kobelev E, Zhanaeva SY, Aftanas LI. Winter-summer difference in post-awakening salivary alpha-amylase and sleepiness depending on sleep and melatonin. Physiol Behav. 2021;240:113549.

    Article  CAS  PubMed  Google Scholar 

  42. Danker-Hopfe H, Sauter C, Kowalski JT, Kropp S, Ströhle A, Wesemann U, et al. Sleep quality of German soldiers before, during and after deployment in Afghanistan-a prospective study. J Sleep Res. 2017;26(3):353–63.

    Article  PubMed  Google Scholar 

  43. Dijk DJ, Neri DF, Wyatt JK, Ronda JM, Riel E, Ritz-De Cecco A, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights. Am J Physiol Regulatory Integrative Comp Physiol. 2001;281:R1647–64.

    Article  CAS  Google Scholar 

  44. Folgueira A, Simonelli G, Plano S, Tortello C, Cuiuli JM, Blanchard A, et al. Sleep, napping and alertness during an overwintering mission at Belgrano II Argentine Antarctic station. Sci Rep. 2019;9(1):10875.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Forberg K, Waage S, Moen B, Bjorvatn B. Subjective and objective sleep and sleepiness among tunnel workers in an extreme and isolated environment: 10-h shifts, 21-day working period, at 78 degrees north. Sleep Med. 2010;11(2):185–90.

    Article  PubMed  Google Scholar 

  46. Friborg O, Rosenvinge JH, Wynn R, Gradisar M. Sleep timing, chronotype, mood, and behavior at an Arctic latitude (69 degrees N). Sleep Med. 2014;15(7):798–807.

    Article  PubMed  Google Scholar 

  47. Gander PH, Macdonald JA, Montgomery JC, Paulin MG. Adaptation of sleep and circadian rhythms to the Antarctic summer: A question of zeitgeber strength. Aviat Space Environ Med. 1991;62:1019–25.

    CAS  PubMed  Google Scholar 

  48. Gemignani A, Piarulli A, Menicucci D, Laurino M, Rota G, Mastorci F, et al. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars. Int J Psychophysiol. 2014;93(2):211–9.

    Article  PubMed  Google Scholar 

  49. Graeber RC, Dement WC, Nicholson AN, Sasaki M, Wegmann HM. International cooperative study of aircrew layover sleep: Operational summary. Aviat Space Environ Med. 1986;57(12, Suppl.):B10-3.

    CAS  PubMed  Google Scholar 

  50. Griofa MO, Blue RS, Cohen KD, O’Keeffe DT. Sleep stability and cognitive function in an Arctic Martian analogue. Aviat Space Environ Med. 2011;82(4):434–41.

    Article  PubMed  Google Scholar 

  51. Gundel A, Nalishiti V, Reucher E, Vejvoda M, Zulley J. Sleep and circadian rhythm during a short space mission. Clin Investig. 1993;71:718–24.

    Article  CAS  PubMed  Google Scholar 

  52. Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res. 1997;6:1–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hansen V, Jacobsen BK, Husby R. Mental distress during winter. An epidemiologic study of 7759 adults north of Arctic Circle. Acta Psychiatr Scand. 1991;84:137–41.

    Article  CAS  PubMed  Google Scholar 

  54. Harris E, Taylor MK, Drummond SPA, Larson GE, Potterat EG. Assessment of sleep disruption and sleep quality in naval special warfare operators. Mil Med. 2015;180(7):803–8.

    Article  PubMed  Google Scholar 

  55. Ikeda A, Kawai K, Tsutsumi M, Yoshimura K, Ohno G, Hasegawa T, et al. Impact of living at the Japanese Antarctic research expedition base on urinary status. Low Urin Tract Symptoms. 2018;10(1):27–31.

    Article  PubMed  Google Scholar 

  56. Joern AT, Shurley JT, Brooks RE, Guenter CA, Pierce CM. Short-term changes in sleep patterns on arrival at the South Polar plateau. Arch Intern Med. 1970;125:649–54.

    Article  CAS  PubMed  Google Scholar 

  57. Johnsen MT, Wynn R, Bratlid T. Is there a negative impact of winter on mental distress and sleeping problems in the subarctic: The Tromsø Study. BMC Psychiatry. 2012;12:225.

    Article  PubMed  PubMed Central  Google Scholar 

  58. •• Jones CW, Basner M, Mollicone DJ, Mott CM, Dinges DF. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep. 2022;45(3):zsac006. The largest study to date of sleep during spaceflight and onboard the International Space Station, comprising a large sample (n=24) of astronauts undergoing a prolonged, 6-month space mission with multiple data collection points before, during, and after launch. TST was consistently low (~6.5h) despite 8.5h sleep opportunities, while lower TST was linked to increased stress, workload, physical exhaustion, mental fatigue, poor objective psychomotor vigilance, and decreased sleep quality.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kawasaki A, Wisniewski S, Healey B, Pattyn N, Kunz D, Basner M, et al. Impact of long-term daylight deprivation on retinal light sensitivity, circadian rhythms and sleep during the Antarctic winter. Sci Rep. 2018;8(1):16185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kelly TK, Neri DF, Dijk D-J, Grill JT, Shanahan TL, Ryman D, et al. Nonentrained Circadian rhythms of melatonin in submariners scheduled to an 18-hour day. J Biol Rhythms. 1999;14(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  61. Koller DP, Kasanin V, Flynn-Evans EE, Sullivan JP, Dijk DJ, Czeisler CA, et al. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity. 2021;7(1):48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kong F, Liu S, Li Q, Wang L. Sleep architecture in partially acclimatized lowlanders and native Tibetans at 3800 meter altitude: What are the differences? High Alt Med Biol. 2015;16(3):223–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kraft RA, Inoue N, Mizuno K, Oshima H, Murai TA, Sekiguchi C. Physiological changes, sleep, and morning mood in an isolated environment. Aviat Space Environ Med. 2002;73(11):1089–93.

    PubMed  Google Scholar 

  64. Lewis HE, Masterton JP. Sleep and wakefulness in the arctic. Lancet. 1957;June(22):1262–6.

    Article  Google Scholar 

  65. Lowden A, Lemos N, Gonçalves B, Öztürk G, Louzada FM, Pedrazzoli M, et al. Delayed sleep in winter related to natural daylight exposure among Arctic day workers. Clocks Sleep. 2019;1(1):105–16.

    Article  PubMed  Google Scholar 

  66. Lubas MM, Maduro RS, Szklo-Coxe M. An exploratory study examining the associations between sunlight exposure, sleep behaviours and sleep outcomes during an Arctic summer. Int J Circumpolar Health. 2019;78(1):1574698.

  67. Mantua J, Bessey AF, Ritland BM, Naylor JA, Chabuz R, McKeon AB, et al. Sleep loss is related to unstable stationary balance in U.S. Army soldiers in an operationally-relevant context. Sleep Med. 2020;73:130–4.

    Article  PubMed  Google Scholar 

  68. Marqueze EC, Vasconcelos S, Garefelt J, Skene DJ, Moreno CR, Lowden A. natural light exposure, sleep and depression among day workers and shiftworkers at Arctic and equatorial latitudes. PLoS ONE. 2015;10(4):e0122078.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Matsangas P, Shattuck NL, McCauley ME. Sleep duration in rough sea conditions. Aerosp Med Hum Perform. 2015;86(10):901–6.

    Article  PubMed  Google Scholar 

  70. Matsangas P, Shattuck NL, Saitzyk A. Sleep-related practices, behaviors, and sleep-related difficulties in deployed active-duty service members performing security duties. Behavi Sleep Med. 2020;18(2):262–74.

    Article  Google Scholar 

  71. Midwinter MJ, Arendt J. Adaptation of the melatonin rhythm in human subjects following nightshift work in Antarctica. Neurosci Lett. 1991;122(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  72. Monk TH, Buysse DJ, Billy BD, Kennedy KS, Willrich LM. Sleep and circadian rhythms in four orbiting astronauts. J Biol Rhythms. 1998;13(3):188–201.

    Article  CAS  PubMed  Google Scholar 

  73. Morrison SA, Mirnik D, Korsic S, Eiken O, Mekjavic IB, Dolenc-Groselj L. Bed rest and hypoxic exposure affect sleep architecture and breathing stability. Front Physiol. 2017;8:410.

  74. • Nagashima H, Matsumoto K, Seo Y, Mohri M, Naraki N, Matsuoka S. Sleep patterns during 30-m nitrox saturation dives and in a confined atmospheric environment. Psychiatry Clin Neurosci. 2002;56:267–8. In groups of pressurized 30-m Nitrox inexperienced divers, and in a non-pressurized control, longer confinement periods progressively decreased sleep efficiency and increased sleep latency. This is suggestive of sleep impairments related specifically to stress and anticipation rather than environmental change to atmospheric pressure.

    Article  PubMed  Google Scholar 

  75. Natani K, Shurley JT, Pierce CM, Brooks RE. Long-term changes in sleep patterns in men on the South Polar plateau. Arch Intern Med. 1970;125(4):655–9.

  76. Nicholson AN, Pascoe PA, Spencer MB, Stone BM, Green RL. Nocturnal sleep and daytime alertness of aircrew after transmeridian flights. Aviat Space Environ Med. 1986;57(12, Suppl.):B42-52.

    Google Scholar 

  77. Nieuwenhuys A, Dora J, Knufinke-Meyfroyt M, Beckers D, Rietjens G, Helmhout P. “20,000 leagues under the sea”: Sleep, cognitive performance, and self-reported recovery status during a 67-day military submarine mission. Appl Ergon. 2021;91:103295.

  78. Nilssen O, Lipton R, Brenn T, Hoyer G, Boiko E, Tkatchev A. Sleeping problems at 78 degrees north: The Svalbard Study. Acta Psychiatr Scand. 1997;95(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  79. Otsuka K, Cornelissen G, Furukawa S, Kubo Y, Shibata K, Mizuno K, et al. Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep. 2021;11(1):14907.

  80. Palinkas LA, Houseal M, Miller C. Sleep and mood during a winter in Antarctica. Int J Circumpolar Health. 2000;59:63–73.

    CAS  PubMed  Google Scholar 

  81. Pattyn N, Mairesse O, Cortoos A, Marcoen N, Neyt X, Meeusen R. Sleep during an Antarctic summer expedition: New light on “polar insomnia.” J Appl Physiol. 2017;122(4):788–94.

    Article  PubMed  Google Scholar 

  82. Paul MA, Love RJ, Hawton A, Arendt J. Sleep and the endogenous melatonin rhythm of high arctic residents during the summer and winter. Physiol Behav. 2015;141:199–206.

    Article  CAS  PubMed  Google Scholar 

  83. Pedlar CR, Lane AM, Lloyd JC, Dawson J, Emegbo S, Whyte GP, et al. Sleep profiles and mood states during an expedition to the South Pole. Wildernes Environ Med. 2007;18:127–32.

    Article  Google Scholar 

  84. Peterson AL, Goodie JL, Satterfield WA, Brim WL. Sleep disturbance during military deployment. Mil Med. 2008;173(3):230–5.

    Article  PubMed  Google Scholar 

  85. Petit G, Cebolla AM, Fattinger S, Petieau M, Summerer L, Cheron G, et al. Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS. NPJ Microgravity. 2019;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Premkumar M, Sable T, Dhanwal D, Dewan R. Circadian levels of serum melatonin and cortisol in relation to changes in mood, sleep, and neurocognitive performance, spanning a year of residence in Antarctica. Neurosci J. 2013;2013:254090.

    Article  PubMed  Google Scholar 

  87. Rojc B, Morrison SA, Eiken O, Mekjavic IB, Dolenc-Grošelj L. The separate and combined effects of hypoxia and sustained recumbency/inactivity on sleep architecture. Eur J Appl Physiol. 2014;114(9):1973–81.

    Article  CAS  PubMed  Google Scholar 

  88. Rostain J-C, Gardette-Chauffour MC, Gourret JP, Naquet R. Sleep disturbances in man during different compression profiles up to 62 bars in helium-oxygen mixture. Electroencephalogr Clin Neurophysiol. 1988;69:127–35.

    Article  CAS  PubMed  Google Scholar 

  89. Rostain JC, Regesta G, Gardette-Chauffour MC, Naquet R. Sleep organization in man during long stays at 30 and 40 bar in a helium-oxygen mixture. Undersea Biomed Res. 1991;18(1):21–36.

    CAS  PubMed  Google Scholar 

  90. Rummel J, Sallin E, Lipscomb H. Circadian rhythms in simulated and manned orbital space flight. Rass Neurol Veg. 1967;21(1):41–56.

  91. Russell DW, Markwald RR, Jameson JT. Self‐reported sleep and sleep deficiency: Results from a large initiative of sailors attached to U.S. Navy warships. J Sleep Res. 2021;30(6):e13397.

  92. Santy PA, Kapanka H, Davis JR, Stewart DF. Analysis of sleep on shuttle missions. Aviat Space Environ Med. 1988;59:1094–7.

    CAS  PubMed  Google Scholar 

  93. Schaefer KE, Kerr CM, Buss D, Haus E. Effect of 18-h watch schedules on circadian cycles of physiological functions during submarine patrols. Undersea Biomed Res. 1979;6:S81-90.

    PubMed  Google Scholar 

  94. Seelig AD, Jacobson IG, Smith B, Hooper TI, Boyko EJ, Gackstetter GD, et al. Sleep patterns before, during, and after deployment to Iraq and Afghanistan. Sleep. 2010;33(12):1615–22.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sivertsen B, Overland S, Krokstad S, Mykletun A. Seasonal variations in sleep problems at latitude 63 degrees -65 degrees in Norway: The Nord-Trondelag Health Study, 1995–1997. Am J Epidemiol. 2011;174(2):147–53.

    Article  PubMed  Google Scholar 

  96. Steel GD, Callaway M, Suedfeld P, Palinkas L. Human sleep-wake cycles in the high Arctic: Effects of unusual photoperiodicity in a natural setting. Biol Rhythm Res. 1995;26(5):582–92.

    Article  CAS  PubMed  Google Scholar 

  97. Steinach M, Kohlberg E, Maggioni MA, Mendt S, Opatz O, Stahn A, et al. Sleep quality changes during overwintering at the German Antarctic stations Neumayer II and III: The gender factor. PLoS ONE. 2016;11(2):e0150099.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stoilova I, Zdravev T, Yanev T. Evaluation of sleep in space flight. C R Acad Bulg Sci. 2000;53(6):59–62.

    CAS  PubMed  Google Scholar 

  99. Stokkan K-A, Reiter RJ. Melatonin rhythms in Arctic urban residents. J Pineal Res. 1994;16:33–6.

    Article  CAS  PubMed  Google Scholar 

  100. Tassino B, Horta S, Santana N, Levandovski R, Silva A. Extreme late chronotypes and social jetlag challenged by Antarctic conditions in a population of university students from Uruguay. Sleep Sci. 2016;9(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tyyska J, Kokko J, Salonen M, Koivu M, Kyrolainen H. Association with physical fitness, serum hormones and sleep during a 15-day military field training. J Sci Med Sport. 2010;13(3):356–9.

    Article  PubMed  Google Scholar 

  102. Usui A, Obinata I, Ishizuka Y, Okado T, Fukuzawa H, Kanba S. Seasonal changes in human sleep–wake rhythm in Antarctica and Japan. Psychiatry Clin Neurosci. 2000;54:361–2.

    Article  CAS  PubMed  Google Scholar 

  103. Van Cutsem J, Pattyn N, Mairesse O, Delwiche B, Fernandez Tellez H, Van Puyvelde M, et al. Adult female sleep during hypoxic bed rest. Front Neurosci. 2022;16:852741.

  104. • VanPuyvelde M, Rietjens G, Helmhout P, Mairesse O, Van Cutsem J, Pattyn N. The submariners’ sleep study: A field investigation of sleep and circadian hormones during a 67-day submarine mission with a strict 6-h-on/6-h-off watch routine. J Appl Physiol (1985). 2022;132(4):1069–79. During a prolonged 67-day submarine patrol, with 6 hours-on, 6 hours-off schedules, sleep patterns were accommodated to sleep opportunity, with a typically long 4-5 hour bout complemented by a 1.5 hour bout. Cortisol levels but not melatonin levels became entrained to the new work-rest schedule.

    Article  Google Scholar 

  105. Voutselas S, Stavrou V, Zouridis S, Vavougios G, Gourgroulianis KI, Voutselas V. The effect of sleep quality in Sherpani Col High Camp Everest. Respir Physiol Neurobiol. 2019;269:103261.

  106. Wang Z, Chen B, Li W, Xie F, Loke AY, Shu Q. Sleep quality and its impacts on quality of life among military personnel in remote frontier areas and extreme cold environments. Health Qual Life Outcomes. 2020;18(1):227.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Weissová K, Škrabalová J, Skálová K, Bendová Z, Kopřivová J. The effect of a common daily schedule on human circadian rhythms during the polar day in Svalbard: A field study. J Circadian Rhythms. 2019;17(1):1–8.

  108. Weitzman ED, deGraaf AS, Sassin JF, Hansen T, Godtlibsen OB, Perlow M, et al. Seasonal patterns of sleep stages and secretion of cortisol and growth hormone during 24 hour periods in northern Norway. Acta Endocrinol (Copenh). 1975;78(1):65–76.

    CAS  PubMed  Google Scholar 

  109. Weydahl A, Sothem RB, Cornélissen G, Wetterberg L. Geomagnetic activity influences the melatonin secretion at latitude 70° N. Biomed Pharmacother. 2001;55:57–62.

    Article  Google Scholar 

  110. Weymouth W, Steel GD. Sleep patterns during an Antarctic field expedition. Mil Med. 2013;178(4):438–44.

    Article  PubMed  Google Scholar 

  111. Yoneyama S, Hashimoto S, Honma K. Seasonal changes of human circadian rhythms in Antarctica. Am J Physiol. 1999;277(4):R1091–7.

    CAS  PubMed  Google Scholar 

  112. Zavalko IM, Rasskazova EI, Gordeev SA, Palatov SU, Kovrov GV. Effects of long-term isolation and anticipation of significant event on sleep: Results of the project “Mars-520.” Hum Physiol. 2013;39(6):602–7.

    Article  Google Scholar 

  113. Borbely AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms. 1999;14(6):559–70.

    Article  Google Scholar 

  114. Sivertsen B, Friborg O, Pallesen S, Vedaa O, Hopstock LA. Sleep in the land of the midnight sun and polar night: The Tromso study. Chronobiol Int. 2021;38(3):334–42.

    Article  PubMed  Google Scholar 

  115. Kim E-J, Dimsdale JE. The effect of psychosocial stress on sleep: A review of polysomnographic evidence. Behav Sleep Med. 2007;5(4):256–78.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Erblang M, Sauvet F, Drogou C, Quiquempoix M, Van Beers P, Guillard M, et al. Genetic determinants of neurobehavioral responses to caffeine administration during sleep deprivation: A randomized, cross over study (NCT03859882). Genes. 2021;12(4):555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Cutsem J, Dessy E, Van Puyvelde M, Mairesse O, Neyt X, Pattyn N. Trait interindividual differences in the effectiveness of modafinil. Springer International Publishing; 2021. p. 12–20.

  118. Landon LB, Douglas GL, Downs ME, Greene MR, Whitmire AM, Zwart SR, et al. The behavioral biology of teams: Multidisciplinary contributions to social dynamics in isolated, confined, and extreme environments. Front Psychol. 2019;10:2571.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Van Puyvelde M, Gijbels D, Van Caelenberg T, Smith N, Bessone L, Buckle-Charlesworth S, Pattyn N. Living on the edge: How to prepare for it? Front Neuroergon. 2022;3:100774.

  120. Blackwell T, Redline S, Ancoli-Israel S, Schneider JL, Surovec S, Johnson NL, et al. Comparison of sleep parameters from actigraphy and polysomnography in older women: The SOF study. Sleep. 2008;31(2):283–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Anushka Sondhoo and Élodie Petit for screening abstracts.

Funding

This work was partially supported by the Office of Naval Research Global, Grant Number N62909-22–1-2008. Additionally, GS is supported by the Fonds de Recherche du Québec (Santé) Research Scholar Program and XM is supported by a Canadian Institutes of Health Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Simonelli.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines). No ethics approval was required for this review as no human or animal data was collected.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Military Mental Health

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Berg, N.H., Michaud, X., Pattyn, N. et al. How Sleep Research in Extreme Environments Can Inform the Military: Advocating for a Transactional Model of Sleep Adaptation. Curr Psychiatry Rep 25, 73–91 (2023). https://doi.org/10.1007/s11920-022-01407-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-022-01407-3

Keywords

Navigation