Skip to main content
Log in

Development of Autonomic Nervous System Assays as Point-of-Care Tests to Supplement Clinical Judgment in Risk Assessment for Suicidal Behavior: A Review

  • Mood Disorders (E Baca-Garcia, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A biomarker point-of-care (POC) test that supplements the psychiatric interview and improves detection of patients at risk for suicide would be of value, and assays of autonomic nervous system (ANS) activity would satisfy the logistical requirements for a POC test. We performed a selective review of the available literature of ANS assays related to risk for suicide.

Recent Findings

We searched PubMed and Web of Science with the strategy: “suicide OR suicidal” AND “electrodermal OR heart rate variability OR pupillometry OR pupillography.” The search produced 119 items, 21 of which provided original data regarding ANS methods and suicide. These 21 studies included 6 for electrodermal activity, 14 for heart rate variability, and 1 for the pupillary light reflex. The 21 papers showed associations between ANS assays and suicide risk in a direction suggesting underlying hyperarousal in patients at risk for suicide.

Summary

ANS assays show promise for future development as POC tests to supplement clinical decision making in estimating risk for suicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Ivey-Stephenson AZ, Crosby AE, Jack SPD, Haileyesus T, Kresnow-Sedacca M-J. Suicide trends among and within urbanization levels by sex, race/ethnicity, age group, and mechanism of death - United States 2001–2015. MMWR Surveill Summ. 2017;66(18):1–9.

    PubMed  PubMed Central  Google Scholar 

  2. Stone DM, Simon TR, Fowler KA, Kegler SR, Yuan K, Holland KM, et al. Vital Signs: Trends in State Suicide Rates - United States 1999–2016 and Circumstances Contributing to Suicide - 27 States, 2015. MMWR Morb Mortal Wkly Rep. 2018;67(22):617–24.

    PubMed  PubMed Central  Google Scholar 

  3. Drapeau C, McIntosh J. U.S.A. suicide: 2018 official data. American Assoc Suicidology. 2020. http://www.suicidology.org.

  4. Center for Disease Control and Prevention. Underlying Cause of Death, 1999-2019 Results 2020 [Available from: https://wonder.cdc.gov/controller/datarequest/D76;jsessionid=41EF14BB836E66D863EB056ABD50.

  5. McCall W, Black C. The link between suicide and insomnia: theoretical mechanisms. Curr Psychiatry Rep. 2013;15:389.

    PubMed  PubMed Central  Google Scholar 

  6. Bae S, Lee Y, Cho IH, Kim S, Im J, Cho S. Risk factors for suicidal ideation of the general population. J Korean Med Sci. 2013;28:602–7.

    PubMed  PubMed Central  Google Scholar 

  7. Arsenault-Lapierre G, Kim C, Turecki G. Psychiatric diagnoses in 3275 suicides: a meta-analysis. BMC Psychiatry. 2004;4:37.

    PubMed  PubMed Central  Google Scholar 

  8. Blair-West GW, Cantor CH, Mellsop GW, Eyeson-Annan ML. Lifetime suicide risk in major depression: sex and age determinants. J Affect Disord. 1999;55(2–3):171–8.

    CAS  PubMed  Google Scholar 

  9. Palmer BA, Pankratz VS, Bostwick JM. The lifetime risk of suicide in schizophrenia: a reexamination. Arch Gen Psychiatry. 2005;62(3):247–53.

    PubMed  Google Scholar 

  10. Schaffer A, Sinyor M, Kurdyak P, Vigod S, Sareen J, Reis C, et al. Population-based analysis of health care contacts among suicide decedents: identifying opportunities for more targeted suicide prevention strategies. World Psychiatry. 2016;15(2):135–45.

    PubMed  PubMed Central  Google Scholar 

  11. Bernecker S, Zorumski K, Gutierrez P, Joiner T, King A, Liu H, et al. Predicting suicide attempts among soldiers who deny suicidal ideation in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). Behav Res Ther. 2019;120: 103350. https://doi.org/10.1016/j.brat.2018.11.018.

    Article  PubMed  Google Scholar 

  12. Williams C, Davidson J, Montgomery I. Impulsive suicidal behavior. J Clin Psychol. 1980;36:90–4.

    CAS  PubMed  Google Scholar 

  13. Simon T, Swann A, Powell K, Potter L, Kresnow M-J, O’Carroll P. Characteristics of impulsive suicide attempts and attempters. Suicide Life Threat Behav. 2001;32(s1):49–59.

    CAS  PubMed  Google Scholar 

  14. Deisenhammer E, Ing C-M, Strauss R, Kemmler G, Hinterhuber H, Weiss E. The duration of the suicidal process: how much time is left for intervention between consideration and accomplishment of a suicide attempt? J Clin Psychiatry. 2009;70(1):19–24.

    PubMed  Google Scholar 

  15. Cummins B, Ligler F, Walker G. Point-of-care diagnostics for niche applications. Biotechnol Adv. 2016;34(3):161–76.

    PubMed  PubMed Central  Google Scholar 

  16. Price C. Point of care testing. BMJ. 2001;322:1285–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaw J. Practical challenges related to point of care testing. Pract Lab Med. 2016;4:22–9.

    PubMed  Google Scholar 

  18. Fryback D, Thornbury J. The efficacy of diagnostic imaging. Med DecisMaking. 1991;11:88–94.

    CAS  Google Scholar 

  19. Zheng L, Wang O, Hao S, Ye C, Liu M, Xia M, et al. Development of an early-warning system for high risk patients for suicide attempt using deep learning and electronic health records. Transl Psychiatry. 2020;10:72. https://doi.org/10.1038/s41398-020-0684-2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roy A, Nikolitch K, McGinn R, Jinah S, Klement W, Kaminsky Z. A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ Digit Med. 2020;3:78. https://doi.org/10.1038/s41746-020-0287-6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaroszewski A, Morris R, Nock M. Randomized controlled trial of an online machine learning-driven risk assessment and intervention platform for increasing the use of crisis services. J Consult Clin Psychol. 2019;87(4):370–9.

    PubMed  Google Scholar 

  22. Desmyter S, van Heeringen C, Audenaert K. Structural and functional neuroimaging studies of the suicidal brain. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:796–808.

    CAS  PubMed  Google Scholar 

  23. Calati R, Nemeroff C, Lopez-Castroman J, Cohen L, Galynker I. Candidate biomarkers of suicide crisis syndrome: what to test next? A concept paper Int J Neuropsychopharmacol. 2020;23(3):192–5.

    CAS  PubMed  Google Scholar 

  24. Niculescu AB, Le-Niculescu H, Levey DF, Phalen PL, Dainton HL, Roseberry K, et al. Precision medicine for suicidality: from universality to subtypes and personalization. Mol Psychiatry. 2017;22(9):1250–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribeiro J, Yen S, Joiner T, Siegler I. Capability for suicide interacts with states of heightened arousal to predict death by suicide beyond the effects of depression and hopelessness. J Affect Disord. 2015;188:53–9.

    PubMed  PubMed Central  Google Scholar 

  26. Johnson S, Elliott M, Carver C. Impulsive responses to positive and negative emotions: parallel neurocognitive correlates and their implications. Biol Psychiatry. 2020;87:338–49.

    PubMed  Google Scholar 

  27. Harle K, Shenoy P, Paulus M. The influence of emotions on cognitive control: feelings and beliefs - where do they meet? Front Hum Neurosci. 2013;7:508. https://doi.org/10.3389/fnhum.2013.00508.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cha C, Najmi S, Park J, Finn C, Nock M. Attentional bias towards suicide-related stimuli predicts suicidal behavior. J Abnorm Psychol. 2010;119:616–22.

    PubMed  PubMed Central  Google Scholar 

  29. Nock M, Park J, Finn C, Deliberto T, Dour H, Banaji M. Measuring the suicidal mind: implicit cognition predicts suicidal behavior. Psychol Sci. 2010;21(4):511–7.

    PubMed  Google Scholar 

  30. Randall J, Rowe B, Dong K, Nock M, Colman I. Assessment of self-harm risk using implicit thoughts. Psychol Assess. 2013;25:714–21.

    PubMed  Google Scholar 

  31. Pollock L, Williams J. Problem-solving in suicide attempters. Psychol Med. 2004;34:163–7.

    CAS  PubMed  Google Scholar 

  32. Keilp J, Sackeim H, Brodsky B, Oquendo M, Malone K, Mann J. Neuropsychological dysfunction in depressed suicide attempters. Am J Psychiatry. 2001;158:735–41.

    CAS  PubMed  Google Scholar 

  33. Keilp J, Gorlyn M, Russell M, Oquendo M, Burke A, Harkavy-Friedman J, et al. Neuropsychological function and suicidal behavior: attention control memory and executive dysfunction in suicide attempt. Psychol Med. 2013;43:539–51.

    CAS  PubMed  Google Scholar 

  34. Keilp J, Gorlyn M, Oquendo M, Burke A, Mann J. Attention deficit in depressed suicide attempters. Psychiatry Res. 2008;159:7–17.

    PubMed  PubMed Central  Google Scholar 

  35. Berridge C. Noradrenergic modulation of arousal. Brain Res Rev. 2008;58(1):1–17.

    CAS  PubMed  Google Scholar 

  36. Carter JR, Grimaldi D, Fonkoue IT, Medalie L, Mokhlesi B, Cauter EV. Assessment of Sympathetic Neural Activity in Chronic Insomnia: Evidence for Elevated Cardiovascular Risk. Sleep. 2018;41(6):zsy048. https://doi.org/10.1093/sleep/zsy048.

    Article  PubMed Central  Google Scholar 

  37. Lelkes Z, Porkka-Heiskanen T, Stenberg D. Cholinergic basal forebrain structures are involved in the mediation of the arousal effect of noradrenaline. J Sleep Res. 2013;22:721–6.

    PubMed  Google Scholar 

  38. Sander C, Hensch T, Wittekind D, Bottger D, Hegerl U. Assessment of wakefulness and brain arousal regulation in psychiatric research. Neuropsychobiology. 2015;72:195–205.

    PubMed  Google Scholar 

  39. Vallbo A, Hagbarth K, Wallin B. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J Appl Physiol. 2004;96:1262–9.

    PubMed  Google Scholar 

  40. Thorell L, Wolfersdorf M, Straub R, Steyer J, Hodgkinson S, Kaschka W. Electrodermal hyporeactivity as a trait marker for suicidal propensity in uni- and bipolar depression. J Psychiatric Res. 2013;47:1925–31.

    CAS  Google Scholar 

  41. Sarchiapone M, Gramaglia C, Iosue M, Carli V, Serretti A, Marangon D, et al. The association between electrodermal activity (EDA) depression and suicidal behavior: a systematic review and narrative synthesis. BMC Psychiatry. 2018;18:22. https://doi.org/10.1186/s12888-017-1551-4.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jandl M, Steyer J, Kaschka WP. Suicide risk markers in major depressive disorder: a study of electrodermal activity and event-related potentials. J Affect Disord. 2010;123(1–3):138–49.

    PubMed  Google Scholar 

  43. Thorell LH. Valid electrodermal hyporeactivity for depressive suicidal propensity offers links to cognitive theory. Acta Psychiatr Scand. 2009;119(5):338–49.

    PubMed  Google Scholar 

  44. Edman G, Asberg M, Levander S, Schalling D. Skin conductance habituation and cerebrospinal fluid 5-hydroxyindoleacetic acid in suicidal patients. Arch Gen Psychiatry. 1986;43(6):586–92.

    CAS  PubMed  Google Scholar 

  45. Wolfersdorf M, Straub R. Electrodermal reactivity in male and female depressive patients who later died by suicide. Acta Psychiatr Scand. 1994;89(4):279–84.

    CAS  PubMed  Google Scholar 

  46. Keller F, Wolfersdorf M, Straub R, Hole G. Suicidal behaviour and electrodermal activity in depressive inpatients. Acta Psychiatr Scand. 1991;83(5):324–8.

    CAS  PubMed  Google Scholar 

  47. Dawson ME, Schell AM. What does electrodermal activity tell us about prognosis in the schizophrenia spectrum? Schizophr Res. 2002;54(1–2):87–93.

    PubMed  Google Scholar 

  48. Schell AM, Dawson ME, Rissling A, Ventura J, Subotnik KL, Gitlin MJ, et al. Electrodermal predictors of functional outcome and negative symptoms in schizophrenia. Psychophysiology. 2005;42(4):483–92.

    PubMed  Google Scholar 

  49. Sarchiapone M, Iosue M, Carli V, Amore M, Baca-Garcia E, Batra A, et al. EUDOR-A multi-centre research program: A naturalistic, European Multi-centre Clinical study of EDOR Test in adult patients with primary depression. BMC Psychiatry. 2017;17(1):108.

    PubMed  PubMed Central  Google Scholar 

  50. Zuromski KL, Cero I, Witte TK. Insomnia symptoms drive changes in suicidal ideation: a latent difference score model of community adults over a brief interval. J Abnorm Psychol. 2017;126(6):739–49.

    PubMed  Google Scholar 

  51. Chesin M, Cascardi M, Tsang W, Smith S. Blunted arousal in response to psychological stress is associated with current suicide ideation. Arch Suicide Res. 2019;24:S381–90.

    PubMed  Google Scholar 

  52. Hill LK, Hu DD, Koenig J, Sollers JJ 3rd, Kapuku G, Wang X, et al. Ethnic differences in resting heart rate variability: a systematic review and meta-analysis. Psychosom Med. 2015;77(1):16–25.

    PubMed  PubMed Central  Google Scholar 

  53. McNames J, Aboy M. Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med Biol Eng Comput. 2006;44(9):747–56.

    PubMed  Google Scholar 

  54. Munoz ML, van Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, et al. Validity of (Ultra-) Short Recordings for Heart Rate Variability Measurements. PLoS One. 2015;10(9):e0138921.

  55. Wilson S, Chesin M, Fertuck E, Keilp J, Brodsky B, Mann J, et al. Heart rate variability and suicidal behavior. Psychiatric Res. 2016;240:241–7.

    Google Scholar 

  56. Tsypes A, James KM, Woody ML, Feurer C, Kudinova AY, Gibb BE. Resting respiratory sinus arrhythmia in suicide attempters. Psychophysiology. 2018;55(2):e12978.

  57. Forkmann T, Meessen J, Teismann T, Sutterlin S, Gaugel S, Mainz V. Resting vagal tone is negatively associated with suicide ideation. J Affect Disord. 2016;194:30–2.

    PubMed  Google Scholar 

  58. Chang C, Tzeng N, Kao Y, Yeh C, Chang H. The relationships of current suicidal ideation with inflammatory markers and heart rate variability in unmedicated patients with major depressive disorder. Psychiatric Res. 2017;258:449–56.

    Google Scholar 

  59. Adolph D, Teismann T, Forkmann T, Wannemuller A, Margraf J. High frequency heart rate variability: evidence for a transdiagnostic association with suicide ideation. Biol Psychiatry. 2018;138:165–71.

    Google Scholar 

  60. Lin Y, Lin C, Sun IW, Hsu CC, Fang CK, Lo MT, et al. Resting respiratory sinus arrhythmia is related to longer hospitalization in mood-disordered repetitive suicide attempters. World J Biol Psychiatry. 2015;16(5):323–33.

    PubMed  Google Scholar 

  61. Sheridan DC, Baker S, Dehart R, Lin A, Hansen M, Tereshchenko LG, et al. Heart Rate Variability and Its Ability to Detect Worsening Suicidality in Adolescents: A Pilot Trial of Wearable Technology. Psychiatry Investig. 2021;18(10):928–35.

    PubMed  PubMed Central  Google Scholar 

  62. Song B, Yoo S, Kang H, Byeon S, Shin S, Hwang E, et al. Post-traumatic stress disorder, depression, and heart-rate variability among North Korean defectors. Psychiatry Investig. 2011;8(4):297–304.

    PubMed  PubMed Central  Google Scholar 

  63. Lee D, Baek JH, Cho YJ, Hong KS. Association of Resting Heart Rate and Heart Rate Variability With Proximal Suicidal Risk in Patients With Diverse Psychiatric Diagnoses. Front Psychiatry. 2021;12:652340.

  64. Khandoker AH, Luthra V, Abouallaban Y, Saha S, Ahmed KI, Mostafa R, et al. Predicting depressed patients with suicidal ideation from ECG recordings. Med Biol Eng Comput. 2017;55(5):793–805.

    CAS  PubMed  Google Scholar 

  65. Yang X, Daches S, George CJ, Kiss E, Kapornai K, Baji I, et al. Autonomic correlates of lifetime suicidal thoughts and behaviors among adolescents with a history of depression. Psychophysiology. 2019;56(8):e13378.

  66. James KM, Woody ML, Feurer C, Kudinova AY, Gibb BE. Disrupted physiological reactivity among children with a history of suicidal ideation: Moderation by parental expressed emotion-criticism. Biol Psychol. 2017;130:22–9.

    PubMed  PubMed Central  Google Scholar 

  67. Chang H, Chang C, Chen C, Kuo T, Lu R, Huang S. Heart rate variability in patients with fully remitted major depressive disorder. Acta Neuropsychiatr. 2013;25(1):33–42.

    PubMed  Google Scholar 

  68. Clamor A, Lincoln TM, Thayer JF, Koenig J. Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. Br J Psychiatry. 2016;208(1):9–16.

    PubMed  Google Scholar 

  69. Wang HT, Yang CM, Chen KR, Chueh KH. Relationship between heart rate variability and aggressive behavior among patients with schizophrenia hospitalized in acute wards. Perspect Psychiatr Care. 2020;56(2):321–9.

    CAS  PubMed  Google Scholar 

  70. Rachow T, Berger S, Boettger MK, Schulz S, Guinjoan S, Yeragani VK, et al. Nonlinear relationship between electrodermal activity and heart rate variability in patients with acute schizophrenia. Psychophysiology. 2011;48(10):1323–32.

    PubMed  Google Scholar 

  71. Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin P, Kardon R, et al. Standards in pupillography Front Neurol. 2019;10:129. https://doi.org/10.3389/fneur.2019.00129.

    Article  PubMed  Google Scholar 

  72. Hall C, Chilcott R. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics. 2018;8:19. https://doi.org/10.3390/diagnostics8010019.

    Article  CAS  PubMed Central  Google Scholar 

  73. Eggert T, Sauter C, Popp R, Zeitlhoffer J, Danker-Hopfe H. The pupillographic sleepiness test in adults: effects of age, gender and time of day on pupillometric variables. Am J Hum Biol. 2012;24:820–8.

    PubMed  Google Scholar 

  74. Kraemer S, Danker-Hopfe H, Dorn H, Schmidt A, Ehlert I, Herrmann W. Time-of-day variations of indicators of attention: performance, physiologic parameters and self-assessment of sleepiness. Biol Psychiatry. 2000;48:1069–80.

    CAS  PubMed  Google Scholar 

  75. Schumann A, Andrack C, Bar K-J. Differences between sympathetic and parasympathetic modulation in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:324–31.

    PubMed  Google Scholar 

  76. Siegle G, Steinhauer S, Friedman E, Thompson W, Thase M. Remission prognosis for cognitive therapy for recurrent depression using the pupil: utility and neural correlates. Biol Psychiatry. 2011;69:726–33.

    PubMed  PubMed Central  Google Scholar 

  77. Kudinova A, Burkhouse K, Siegle G, Owens M, Woody M, Gibb B. Pupillary reactivity to negative stimuli prospectively predicts recurrence of major depressive disorder in women. Psychophysiology. 2016;53:1836–42.

    PubMed  PubMed Central  Google Scholar 

  78. Bär KJ, Boettger MK, Schulz S, Harzendorf C, Agelink MW, Yeragani VK, et al. The interaction between pupil function and cardiovascular regulation in patients with acute schizophrenia. Clin Neurophysiol. 2008;119(10):2209–13.

    PubMed  Google Scholar 

  79. Morris SK, Granholm E, Sarkin AJ, Jeste DV. Effects of schizophrenia and aging on pupillographic measures of working memory. Schizophr Res. 1997;27(2–3):119–28.

    CAS  PubMed  Google Scholar 

  80. Fountoulakis K, Fotiou F, Iacovides A, Tsiptsios J, Goulas A, Tsolaki M, et al. Changes in pupil reaction to light in melancholic patients. Int J Psychophysiol. 1999;31:121–8.

    CAS  PubMed  Google Scholar 

  81. Bar K-J, Greiner W, Jochum T, Friedrich M, Wagner G, Sauer H. The influence of major depression and its treatment on heart rate variability and pupillary light reflex parameters. J Affect Disord. 2004;82:245–52.

    PubMed  Google Scholar 

  82. McCall W, Sareddy S, Youssef N, Miller B, Rosenquist P. The pupillary light reflex as a point-of-care test for suicide risk: preliminary results. Psychiatry Res. 2021;295: 113582. https://doi.org/10.1016/j.psychres.2020.113582.

    Article  PubMed  Google Scholar 

  83. Miller BJ, Sareddy S, Rosenquist PB, McCall WV. Pupillary light reflex markers of suicide risk in a trans-diagnostic sample. Schizophr Res. 2021;235:1–2.

    PubMed  Google Scholar 

  84. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013;17(5):377–90.

    PubMed  Google Scholar 

  85. Berger M, Riemann D. Symposium: Normal and abnormal REM sleep regulation: REM sleep in depression-an overview. J Sleep Res. 1993;2(4):211–23.

    CAS  PubMed  Google Scholar 

  86. Bar K-J, Schulz S, Koschke M, Harzendorf C, Gayde S, Berg W, et al. Correlations between the autonomic modulation of heart rate, blood pressure and the pupillary light reflex in healthy subjects. J Neurol Sci. 2009;279:9–13.

    PubMed  Google Scholar 

  87. Venkata Sivakumar A, Kalburgi-Narayana M, Kuppusamy M, Ramaswamy P, Bachali S. Computerized dynamic pupillometry as a screening tool for evaluation of autonomic activity. Neurophysiol Clin. 2020;50(5):321–9.

    PubMed  Google Scholar 

  88. Okutucu S, Civelekler M, Aparci M, Sabanoglu C, Dikmetas O, Aksoy H, et al. Computerized dynamic pupillometry indices mirrors the heart rate variability parameters. Eur J Med Pharmacol Sci. 2016;20:2099–105.

    CAS  Google Scholar 

  89. Kaltsatou A, Kouidi E, Fotiou D, Deligiannis P. The use of pupillometry in the assessment of cardiac autonomic function in elite different type trained athletes. Eur J Appl Physiol. 2011;111(9):2079–87.

    PubMed  Google Scholar 

  90. Boettger S, Puta C, Yeragani VK, Donath L, Müller HJ, Gabriel HH, et al. Heart rate variability, QT variability and electrodermal activity during exercise. Med Sci Sports Exerc. 2010;42(3):443–8.

    PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by William V. McCall. Brian Miller contributed to data collection and presentation. The first draft of the manuscript was written by William V. McCall, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to William V. McCall.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of Interest

Dr. Miller has nothing to disclose for the present work. In the past 12 months, he received research support from Augusta University, the National Institute of Mental Health, and the Stanley Medical Research Institute; participated in Advisory Boards for Boehringer Ingelheim; and Honoraria from Psychiatric Times. Dr. Rosenquist has nothing to disclose. Dr. McCall has nothing to disclose for the work under consideration. In the past 12 months, he has received research support from PCORI; has been a consultant for Anthem Insurance, Jazz, Sage, Janssen, and Idorsia; and has received royalties from Wolters Kluwer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mood Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCall, W.V., Rosenquist, P.B. & Miller, B.J. Development of Autonomic Nervous System Assays as Point-of-Care Tests to Supplement Clinical Judgment in Risk Assessment for Suicidal Behavior: A Review. Curr Psychiatry Rep 24, 11–21 (2022). https://doi.org/10.1007/s11920-022-01315-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-022-01315-6

Keywords

Navigation