Skip to main content
Log in

EEG Neurofeedback for Anxiety Disorders and Post-Traumatic Stress Disorders: A Blueprint for a Promising Brain-Based Therapy

  • Anxiety Disorders (A Pelissolo, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders.

Recent Findings

The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain–computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal.

Summary

Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cisler JM, Olatunji BO. Emotion regulation and anxiety disorders. Curr Psychiatry Rep. 2012;14:182–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hyde J, Ryan KM, Waters AM. Psychophysiological markers of fear and anxiety. Curr Psychiatry Rep. 2019;21:56.

    Article  PubMed  Google Scholar 

  3. Shvil E, Rusch HL, Sullivan GM, Neria Y. Neural, psychophysiological, and behavioral markers of fear processing in PTSD: a review of the literature. Curr Psychiatry Rep. 2013;15:358.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry Off J World Psychiatr Assoc WPA. 2014;13:28–35.

    Google Scholar 

  5. Lang PJ, McTeague LM, Bradley MM. RDoC, DSM, and the reflex physiology of fear: a biodimensional analysis of the anxiety disorders spectrum. Psychophysiology. 2016;53:336–47.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci. 2017;40:208–18.

    Article  CAS  PubMed  Google Scholar 

  7. Bazanova OM, Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev. 2014;44:94–110.

    Article  CAS  PubMed  Google Scholar 

  8. Friese U, Daume J, Göschl F, König P, Wang P, Engel AK. Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Sci Rep. 2016;6:32775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oishi N, Mima T, Ishii K, Bushara KO, Hiraoka T, Ueki Y, et al. Neural correlates of regional EEG power change. Neuroimage. 2007;36:1301–12.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience. 2008;156:238–46.

    Article  CAS  PubMed  Google Scholar 

  11. Enriquez-Geppert S, Smit D, Pimenta MG, Arns M. Neurofeedback as a treatment intervention in ADHD: current evidence and practice. Curr Psychiatry Rep. 2019;21:46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Ros T, J Baars B, Lanius RA, Vuilleumier P. Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front Hum Neurosci. 2014;8:1008. This paper proposed a unifying framework for the neuroplastic effects of neurofeedback by evidencing Hebbian and homeostatic mechanisms of brain plasticity.

  13. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017;18:86–100.

    Article  CAS  PubMed  Google Scholar 

  14. Gaume A, Vialatte A, Mora-Sánchez A, Ramdani C, Vialatte FB. A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci Biobehav Rev. 2016;68:891–910.

    Article  CAS  PubMed  Google Scholar 

  15. Hammond DC. Neurofeedback treatment of depression and anxiety. J Adult Dev. 2005;12:131–7.

    Article  Google Scholar 

  16. Tolin DF, Davies CD, Moskow DM, Hofmann SG. Biofeedback and neurofeedback for anxiety disorders: a quantitative and qualitative systematic review. In: Kim Y-K, editor. Anxiety Disord Rethink Underst Recent Discov. Singapore: Springer; 2020. p. 265–89.

  17. Chiba T, Kanazawa T, Koizumi A, Ide K, Taschereau-Dumouchel V, Boku S, et al. Current status of neurofeedback for post-traumatic stress disorder: a systematic review and the possibility of decoded neurofeedback. Front Hum Neurosci. 2019;13:233.

  18. Panisch LS, Hai AH. The effectiveness of using neurofeedback in the treatment of post-traumatic stress disorder: a systematic review. Trauma Violence Abuse. SAGE Publications. 2020;21:541–50.

    Google Scholar 

  19. Reiter K, Andersen SB, Carlsson J. Neurofeedback treatment and posttraumatic stress disorder: effectiveness of neurofeedback on posttraumatic stress disorder and the optimal choice of protocol. J Nerv Ment Dis. 2016;204:69–77.

    Article  PubMed  Google Scholar 

  20. • Steingrimsson S, Bilonic G, Ekelund A-C, Larson T, Stadig I, Svensson M, et al. Electroencephalography-based neurofeedback as treatment for post-traumatic stress disorder: a systematic review and meta-analysis. Eur Psychiatry. Cambridge University Press; 2020;63. This paper reviews the most rigorous randomized clinical trials on EEG NF for PTSD. The pooled data shows a significant SMD of −2.30 (95% CI −4.37 to −0.24) post-treatment, but with very high heterogeneity.

  21. Gerardi M, Cukor J, Difede J, Rizzo A, Rothbaum BO. Virtual reality exposure therapy for post-traumatic stress disorder and other anxiety disorders. Curr Psychiatry Rep. 2010;12:298–305.

    Article  PubMed  Google Scholar 

  22. Grasser LR, Javanbakht A. Treatments of posttraumatic stress disorder in civilian populations. Curr Psychiatry Rep. 2019;21:11.

    Article  PubMed  Google Scholar 

  23. Gapen M, Guy T. Neurofeedback in the treatment of early life stress: a “nudge” for the nervous system? Curr Treat Options Psychiatry. 2021.

  24. •• Jeunet C, Lotte F, Batail J-M, Philip P, Micoulaud Franchi J-A. Using recent BCI literature to deepen our understanding of clinical neurofeedback: a short review. Neuroscience. 2018;378:225–33. This paper presents a model of EEG NF learning mechanisms. It states that NF efficiency relies on both specific (i.e., related to the modulation of target brain activities) and non-specific (i.e., related to the patient’s cognitive and emotional states) effects that can be optimized through the NF training design.

  25. Dudek E, Dodell-Feder D. The efficacy of real-time functional magnetic resonance imaging neurofeedback for psychiatric illness: a meta-analysis of brain and behavioral outcomes. Neurosci Biobehav Rev. 2021;121:291–306.

    Article  PubMed  Google Scholar 

  26. Keynan JN, Meir-Hasson Y, Gilam G, Cohen A, Jackont G, Kinreich S, et al. Limbic activity modulation guided by functional magnetic resonance imaging-inspired electroencephalography improves implicit emotion regulation. Biol Psychiatry. 2016;80:490–6.

    Article  PubMed  Google Scholar 

  27. Keynan JN, Cohen A, Jackont G, Green N, Goldway N, Davidov A, et al. Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nat Hum Behav. 2019;3:63–73.

    Article  PubMed  Google Scholar 

  28. Paret C, Goldway N, Zich C, Keynan JN, Hendler T, Linden D, et al. Current progress in real-time functional magnetic resonance-based neurofeedback: methodological challenges and achievements. NeuroImage. 2019;202:116107.

  29. Hoehn-Saric R, McLeod DR. Anxiety and arousal: physiological changes and their perception. J Affect Disord. 2000;61:217–24.

    Article  CAS  PubMed  Google Scholar 

  30. Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol. 2010;84:394–421.

    Article  PubMed  Google Scholar 

  31. Olbrich S, Sander C, Matschinger H, Mergl R, Trenner M, Schönknecht P, et al. Brain and body. J Psychophysiol Hogrefe Publishing. 2011;25:190–200.

    Article  Google Scholar 

  32. Huang J, Sander C, Jawinski P, Ulke C, Spada J, Hegerl U, et al. Test–retest reliability of brain arousal regulation as assessed with VIGALL 2.0. Neuropsychiatr Electrophysiol. 2015;1–13.

  33. Podvalny E, Noy N, Harel M, Bickel S, Chechik G, Schroeder CE, et al. A unifying principle underlying the extracellular field potential spectral responses in the human cortex. J Neurophysiol. 2015;114:505–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gervasoni D, Lin S-C, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA. Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci Off J Soc Neurosci. 2004;24:11137–47.

  35. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron. 2015;87:1143–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Deiber M-P, Hasler R, Colin J, Dayer A, Aubry J-M, Baggio S, et al. Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage Clin. 2020;25:102145.

  37. Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2010;4:186.

  38. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G. Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex. 2008;18:2010–8.

    Article  PubMed  Google Scholar 

  39. Sauseng P, Klimesch W, Gerloff C, Hummel FC. Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia. 2009;47:284–8.

    Article  CAS  PubMed  Google Scholar 

  40. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, et al. EEG-correlated fMRI of human alpha activity. Neuroimage. 2003;19:1463–76.

    Article  CAS  PubMed  Google Scholar 

  41. Haegens S, Nacher V, Luna R, Romo R, Jensen O. alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci. 2011;108:19377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Macdonald JSP, Mathan S, Yeung N. Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations. Front Psychol. 2011;2:1–16.

    Article  Google Scholar 

  43. Muthukumaraswamy SD, Liley DTJ. 1/f electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. NeuroImage Academic Press. 2018;179:582–95.

    Article  Google Scholar 

  44. Pezze M, McGarrity S, Mason R, Fone KC, Bast T. Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci Off J Soc Neurosci. 2014;34:7931–46.

    Article  CAS  Google Scholar 

  45. Faller J, Cummings J, Saproo S, Sajda P. Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc Natl Acad Sci U S A. National Academy of Sciences; 2019;116:6482–90.

  46. Waschke L, Tune S, Obleser J. Local cortical desynchronization and pupil-linked arousal differentially shape brain states for optimal sensory performance. Peelle JE, Colgin LL, de Gee JW, editors. eLife. eLife Sciences Publications, Ltd; 2019;8:e51501.

  47. Coburn KL, Lauterbach EC, Boutros NN, Black KJ, Arciniegas DB, Coffey CE. The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci. 2006;18:460–500.

    Article  PubMed  Google Scholar 

  48. Jokić-Begić N, Begić D. Quantitative electroencephalogram (qEEG) in combat veterans with post-traumatic stress disorder (PTSD). Nord J Psychiatry. Informa UK Ltd UK; 2003;57:351–5.

  49. Clancy K, Ding M, Bernat E, Schmidt NB, Li W. Restless ‘rest’: intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder. Brain. 2017;140:2041–50.

    Article  PubMed  PubMed Central  Google Scholar 

  50. •• Ros T, Frewen P, Théberge J, Michela A, Kluetsch R, Mueller A, et al. Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cereb Cortex N Y N 1991. 2017;27:4911–22. This paper demonstrated that EEG neurofeedback in PTSD patients can restore abnormal alpha-band dynamics toward levels found in the healthy population.

  51. Lee S-H, Park Y, Jin MJ, Lee YJ, Hahn SW. Childhood trauma associated with enhanced high frequency band powers and induced subjective inattention of adults. Front Behav Neurosci. 2017;11:1–12.

    Article  Google Scholar 

  52. Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, et al. Wake high-density electroencephalography spatiospectral signatures of insomnia. Sleep. 2016;39(5):1015−27.

  53. Oathes DJ, Ray WJ, Yamasaki AS, Borkovec TD, Castonguay LG, Newman MG, et al. Worry, generalized anxiety disorder, and emotion: evidence from the EEG gamma band. Biol Psychol. 2008;79:165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Porjesz B, Begleiter H. Alcoholism and human electrophysiology. Alcohol Res Health J Natl Inst Alcohol Abuse Alcohol. 2003;27:153–60.

    Google Scholar 

  55. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO, et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet. 2004;74:705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety—insights from human genetic studies. Mol Psychiatry. 2010;15:574–88.

    Article  CAS  PubMed  Google Scholar 

  57. Enoch MA, Shen PH, Ducci F, Yuan Q, Liu J, White KV, et al. Common genetic origins for EEG, alcoholism and anxiety: the role of CRH-BP. PLoS One. 2008;3:e3620.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schmidt FM, Sander C, Dietz M-E, Nowak C, Schröder T, Mergl R, et al. Brain arousal regulation as response predictor for antidepressant therapy in major depression. Sci Rep. 2017;7:45187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ulke C, Tenke CE, Kayser J, Sander C, Böttger D, Wong LYX, et al. Resting EEG measures of brain arousal in a multisite study of major depression. Clin EEG Neurosci. 2019;50:3–12.

    Article  PubMed  Google Scholar 

  60. Ulke C, Wittekind DA, Spada J, Franik K, Jawinski P, Hensch T, et al. Brain arousal regulation in SSRI-medicated patients with major depression. J Psychiatr Res. 2019;108:34–9.

    Article  PubMed  Google Scholar 

  61. Surova G, Ulke C, Schmidt FM, Hensch T, Sander C, Hegerl U. Fatigue and brain arousal in patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2021;271:527–36.

    Article  PubMed  Google Scholar 

  62. Nowlis DP, Kamiya J. The control of electroencephalographic alpha rhythms through auditory feedback and the associated mental activity. Psychophysiology. 1970;6:476–84.

    Article  CAS  PubMed  Google Scholar 

  63. Hardt JV, Kamiya J. Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science. 1978;201:79–81.

    Article  CAS  PubMed  Google Scholar 

  64. Klajner F, Hartman LM, Sobell MB. Treatment of substance abuse by relaxation training: a review of its rationale, efficacy and mechanisms. Addict Behav. 1984;9:41–55.

    Article  CAS  PubMed  Google Scholar 

  65. Peniston E, Kulkosky P. Alpha-theta brainwave neuro-feedback therapy for Vietnam veterans with combat-related post-traumatic stress disorder. Med Psychother Int J. 1991;4:47–60.

    Google Scholar 

  66. Wang S-Y, Lin I-M, Fan S-Y, Tsai Y-C, Yen C-F, Yeh Y-C, et al. The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. J Affect Disord. 2019;257:287–96.

    Article  PubMed  Google Scholar 

  67. Paquette V, Beauregard M, Beaulieu-Prévost D. Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Res - Neuroimaging. Elsevier B.V.; 2009;174:231–9.

  68. Pop-Jordanova N, Zorcec T. Child trauma, attachment and biofeedback mitigation. Prilozi. 2004;25:103–14.

    CAS  PubMed  Google Scholar 

  69. Kluetsch RC, Ros T, Théberge J, Frewen PA, Calhoun VD, Schmahl C, et al. Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatr Scand. 2014;130:123–36.

    Article  CAS  PubMed  Google Scholar 

  70. Nicholson AA, Rabellino D, Densmore M, Frewen PA, Paret C, Kluetsch R, et al. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: a preliminary analysis. Hum Brain Mapp. 2018;39:4258–75.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nicholson AA, Ros T, Densmore M, Frewen PA, Neufeld RWJ, Théberge J, et al. A randomized, controlled trial of alpha-rhythm EEG neurofeedback in posttraumatic stress disorder: a preliminary investigation showing evidence of decreased PTSD symptoms and restored default mode and salience network connectivity using fMRI. NeuroImage Clin. 2020;28:102490.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hingray C, McGonigal A, Kotwas I, Micoulaud-Franchi J-A. The relationship between epilepsy and anxiety disorders. Curr Psychiatry Rep. 2019;21:40.

    Article  PubMed  Google Scholar 

  73. Kotwas I, Micoulaud-Franchi J-A, Bartolomei F, Nagai Y. Commentary: Integrating electrodermal biofeedback into pharmacologic treatment of grand mal seizures. Front Hum Neurosci. 2015;9:666.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fan J, Xu P, Van Dam NT, Eilam-Stock T, Gu X, Luo Y-J, et al. Spontaneous brain activity relates to autonomic arousal. J Neurosci. 2012;32:11176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage. 2011;54:1427–31.

    Article  PubMed  Google Scholar 

  76. Rice KM, Blanchard EB, Purcell M. Biofeedback treatments of generalized anxiety disorder: preliminary results. Biofeedback Self-Regul. 1993;18:93–105.

    Article  CAS  PubMed  Google Scholar 

  77. Agnihotri H, Paul M, Sandhu JS. The comparative efficacy of two biofeedback techniques in the treatment of generalized anxiety disorder. Pakistan Journal of Social and Clinical Psychology. 2008;6:35–46.

    Google Scholar 

  78. Sandhu JS, Paul M, Agnihotri H. Biofeedback approach in the treatment of generalized anxiety disorder. Iran J Psychiatry. 2007;2:90–5.

    Google Scholar 

  79. Peniston EG, Marrinan DA, Deming WA, Kulkosky PJ. EEG alpha-theta brainwave synchronization in Vietnam theater veterans with combat-related post-traumatic stress disorder and alcohol abuse. Adv Med Psychother. 1993;37–50.

  80. Kelson CY. The impact of EEG biofeedback on veterans’ symptoms of posttraumatic stress disorder (PTSD). Carol Yasuko. The Chicago School of Professional Psychology: ProQuest Diss Publ; 2013.

    Google Scholar 

  81. van der Kolk BA, Hodgdon H, Gapen M, Musicaro R, Suvak MK, Hamlin E, et al. A randomized controlled study of neurofeedback for chronic PTSD. PLoS One. 2016;11:e0166752.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Noohi S, Miraghaie AM, Arabi A, Nooripour R. Effectiveness of neuro-feedback treatment with alpha/theta method on PTSD symptoms and their executing function. Biomed Res. 2017;28(5):2019–27.

    Google Scholar 

  83. Ros T, Théberge J, Frewen PA, Kluetsch R, Densmore M, Calhoun VD, et al. Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage. 2013;65:324–35.

    Article  PubMed  Google Scholar 

  84. Graap K, Freides D. Regarding the database for the Peniston alpha-theta EEG biofeedback protocol. Appl Psychophysiol Biofeedback. 1998;23(265–72):273–5.

    Google Scholar 

  85. •• Ros T, Enriquez-Geppert S, Zotev V, Young KD, Wood G, Whitfield-Gabrieli S, et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain. 2020;143:1674–85.This paper provides a framework that enables a rigorous and thorough reporting of NF studies. The compliance of the community to this approach is essential: it will enable us to estimate precisely the relevance of EEG NF procedures for patients with anxiety disorders and thereby to optimize their clinical care.

  86. Egner T, Gruzelier JH. Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. NeuroReport. 2003;14:1221–4.

    Article  PubMed  Google Scholar 

  87. Raymond J, Sajid I, Parkinson LA, Gruzelier JH. Biofeedback and dance performance: a preliminary investigation. Appl Psychophysiol Biofeedback. 2005;30:65–73.

    Article  Google Scholar 

  88. Kleber B, Gruzelier J, Bensch M, Birbaumer N. Effects of EEG-biofeedback on professional singing performances. Rev Espanola Psichol. 2008;10:77–61.

    Google Scholar 

  89. Leach J, Holmes P, Hirst L, Gruzelier J. Alpha theta versus SMR training for novice singers/advanced instrumentalists. Rev Espanola Psichol. 2008;10:62.

    Google Scholar 

  90. Raymond J, Varney C, Parkinson LA, Gruzelier JH. The effects of alpha/theta neurofeedback on personality and mood. Cogn Brain Res. 2005;23:287–92.

    Article  Google Scholar 

  91. Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, et al. Psychological predictors of SMR-BCI performance. Biol Psychol. 2012;89:80–6.

    Article  PubMed  Google Scholar 

  92. Jeunet C, N’Kaoua B, Lotte F. Chapter 1 – Advances in user-training for mental-imagery-based BCI control: psychological and cognitive factors and their neural correlates. In: Coyle D, editor. Prog Brain Res. Elsevier; 2016. p. 3–35.

  93. Brosnan MJ. The impact of computer anxiety and self-efficacy upon performance. J Comput Assist Learn. 1998;14:223–34.

    Article  Google Scholar 

  94. Conrad AM, Munro D. Relationships between computer self-efficacy, technology, attitudes and anxiety: development of the Computer Technology Use Scale (CTUS). J Educ Comput Res. SAGE Publications Inc; 2008;39:51–73.

  95. Beas MI, Salanova M. Self-efficacy beliefs, computer training and psychological well-being among information and communication technology workers. Comput Hum Behav. 2006;22:1043–58.

    Article  Google Scholar 

  96. Simsek A. The relationship between computer anxiety and computer self-efficacy. Contemp Educ Technol. 2011;2(3):177–87.

  97. Achim N, Kassim AA. Computer usage: the impact of computer anxiety and computer self-efficacy. Procedia - Soc Behav Sci. 2015;172:701–8.

    Article  Google Scholar 

  98. Saadé RG, Kira D. Computer anxiety in e-learning: the effect of computer self-efficacy. J Inf Technol Educ Res. Informing Science Institute; 2009;8:177–91.

  99. Burde W, Blankertz B. Is the locus of control of reinforcement a predictor of brain–computer interface performance? 2006; Proceedings of the 3th International Brain-Computer Interface Workshop and Training Course, Graz University of Technology, Graz, Austria:76–7.

  100. Nijboer F, Birbaumer N, Kubler A. The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis – a longitudinal study. Front Neurosci. 2010;4:55.

  101. Witte M, Kober SE, Ninaus M, Neuper C, Wood G. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front Hum Neurosci. 2013;7:478.

  102. Kleih SC, Kübler A. Psychological perspectives: quality of life and motivation. In: Grübler G, Hildt E, editors. Brain-Comput-Interfaces Their Ethical Soc Cult Contexts. Dordrecht: Springer Netherlands; 2014. p. 77–84.

  103. Thibault RT, Lifshitz M, Raz A. Neurofeedback or neuroplacebo? Brain. 2017;140:862–4.

    Article  PubMed  Google Scholar 

  104. Lotte F, Larrue F, Mühl C. Flaws in current human training protocols for spontaneous brain–computer interfaces: lessons learned from instructional design. Front Hum Neurosci. 2013;7:568.

  105. •• Roc A, Pillette L, Mladenovic J, Benaroch C, N’Kaoua B, Jeunet C, et al. A review of user training methods in brain computer interfaces based on mental tasks. J Neural Eng. IOP Publishing; 2021;18:011002. This paper reviews the most recent literature on EEG NF and brain–computer interface training protocols. It provides state-of-the-art guidelines that will be most useful for those who want to design, implement, and evaluate EEG NF procedures for patients with anxiety disorders.

  106. Khoury B, Lecomte T, Fortin G, Masse M, Therien P, Bouchard V, et al. Mindfulness-based therapy: a comprehensive meta-analysis. Clin Psychol Rev. 2013;33:763–71.

    Article  PubMed  Google Scholar 

  107. Khoury B, Sharma M, Rush SE, Fournier C. Mindfulness-based stress reduction for healthy individuals: a meta-analysis. J Psychosom Res. 2015;78:519–28.

    Article  PubMed  Google Scholar 

  108. Evans S, Ferrando S, Findler M, Stowell C, Smart C, Haglin D. Mindfulness-based cognitive therapy for generalized anxiety disorder. J Anxiety Disord. 2008;22:716–21.

    Article  PubMed  Google Scholar 

  109. Tan L-F, Dienes Z, Jansari A, Goh S-Y. Effect of mindfulness meditation on brain–computer interface performance. Conscious Cogn. 2014;23:12–21.

    Article  PubMed  Google Scholar 

  110. Brandmeyer T, Delorme A. Meditation and neurofeedback. Front Psychol. 2013;4:688.

  111. Beursken ES. Transparency in BCI: the effect of the mapping between an imagined movement and the resulting action on a user’s sense of agency. 2012.

  112. Khdour HY, Abushalbaq OM, Mughrabi IT, Imam AF, Gluck MA, Herzallah MM, et al. Generalized anxiety disorder and social anxiety disorder, but not panic anxiety disorder, are associated with higher sensitivity to learning from negative feedback: behavioral and computational investigation. Front Integr Neurosci. 2016;10:20.

  113. Pillette L, Jeunet C, Mansencal B, N’Kambou R, N’Kaoua B, Lotte F. A physical learning companion for Mental-Imagery BCI User Training. Int J Hum-Comput Stud. 2020;136:102380.

  114. Micoulaud Franchi J-A, Jeunet C, Lotte F. Neurofeedback: a challenge for integrative clinical neurophysiological studies. Neurophysiol Clin Clin Neurophysiol. 2020;50:1–3.

    Article  Google Scholar 

  115. • Batail J-M, Bioulac S, Cabestaing F, Daudet C, Drapier D, Fouillen M, et al. EEG neurofeedback research: a fertile ground for psychiatry? L’Encephale. 2019;45:245–55. This paper proposes a model to summarize the different features that should be controlled to optimize EEG NF learning in psychiatry. The need for accurate and reliable metrics of training and learning in line with human–computer interaction is also emphasized, including targeted biomarkers and neuroplasticity.

  116. • Micoulaud-Franchi J-A, Batail J-M, Fovet T, Philip P, Cermolacce M, Jaumard-Hakoun A, et al. Towards a pragmatic approach to a psychophysiological unit of analysis for mental and brain disorders: an EEG-copeia for neurofeedback. Appl Psychophysiol Biofeedback. 2019;44:151–72. This paper reviews the most robust EEG target for EEG NF, and organizes these EEG target and related cognitive processes in a psychophysiological unit of analysis matrix inspired by the Research Domain Criteria (RDoC) project.

Download references

Acknowledgements

The editors would like to thank Dr. Jean-Marie Batail for taking the time to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Micoulaud-Franchi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Anxiety Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micoulaud-Franchi, J.A., Jeunet, C., Pelissolo, A. et al. EEG Neurofeedback for Anxiety Disorders and Post-Traumatic Stress Disorders: A Blueprint for a Promising Brain-Based Therapy. Curr Psychiatry Rep 23, 84 (2021). https://doi.org/10.1007/s11920-021-01299-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11920-021-01299-9

Keywords

Navigation