Skip to main content
Log in

Review of Changes in the Reinforcing Effects of Alcohol in Weight Loss Surgery Patients

  • Eating Disorders (S Wonderlich and S Engel, Section Editors)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The reinforcing effects of alcohol are well documented, and they have been shown to play a role in the development of alcohol use disorders (AUDs). Also well established is the fact that post-weight loss surgery (WLS) patients are at an increased risk for AUDs. In the current manuscript, we review the notion that the reinforcing effects of alcohol may change from before to after WLS and discuss a number of determinants of alcohol reinforcement change in WLS patients.

Recent Findings

It has been increasingly well understood that WLS patients are at an increased risk for AUD, but empirical support for the mechanisms that may cause this phenomenon have been lacking. Recently, a model was proposed that offered a number of different potentially causal variables as mechanisms that result in increased risk for AUD in these surgical patients.

Summary

Change in the extent to which alcohol is reinforcing to WLS patients may be key in determining the likelihood of AUDs in this group. We review a host of biological, psychological, and social variables that ultimately impact how reinforcing alcohol is to WLS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivezaj V, et al. Changes in alcohol use after metabolic and bariatric surgery: predictors and mechanisms. Curr Psychiatry Rep. 2019;21(9):85.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Azam H, Shahrestani S, Phan K. Alcohol use disorders before and after bariatric surgery: a systematic review and meta-analysis. Ann Transl Med. 2018;6(8):148.

    Article  PubMed  PubMed Central  Google Scholar 

  3. King WC, et al. Prevalence of alcohol use disorders before and after bariatric surgery. JAMA. 2012;307(23):2516–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Şen OÜH, Türkçapar AG, Yerdel MA. Risk of alcohol use disorder after sleeve gastrectomy. Journal of Laparoendoscopic & Advanced Surgical Techniques, 2021;31(1).

  5. Ostlund MP, et al. Increased admission for alcohol dependence after gastric bypass surgery compared with restrictive bariatric surgery. JAMA Surg. 2013;148(4):374–7.

    Article  PubMed  Google Scholar 

  6. King WC, et al. Alcohol and other substance use after bariatric surgery: prospective evidence from a U.S. multicenter cohort study. Surg Obes Relat Dis. 2017;13(8):1392–1402.

  7. Buffington CK. Alcohol and the gastric bypass patient. Bariatric Times, 2006.

  8. Skinner BF. The behavior of organisms: an experimental analysis. 1938, Cambridge, Massachusetts: B.F. Skinner Foundation.

  9. Cho SB, et al. Positive and negative reinforcement are differentially associated with alcohol consumption as a function of alcohol dependence. Psychol Addict Behav. 2019;33(1):58–68.

    Article  PubMed  PubMed Central  Google Scholar 

  10. de Wit H, Chutuape MA. Increased ethanol choice in social drinkers following ethanol preload. Behavioral Pharmacology. 1993;4(1):29–36.

    Google Scholar 

  11. Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196(4286):129–36.

    Article  CAS  PubMed  Google Scholar 

  12. Wang GJ, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.

    Article  PubMed  CAS  Google Scholar 

  13. Davis JF, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci. 2008;122(6):1257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Durst M, et al. Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes (Lond). 2019;43(4):917–27.

    Article  CAS  Google Scholar 

  15. Castro DC, Berridge KC. Advances in the neurobiological bases for food “liking” versus “wanting.” Physiol Behav. 2014;136:22–30.

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann JDNSM. Dopamine invigorates reward seeking by promoting cue-evoked excitation in the nucleus accumbens. J Neurosci. 2014;34(43):14349–14364.

  17. Michaelides M, et al. Dopamine D2 receptor signaling in the nucleus accumbens comprises a metabolic-cognitive brain interface regulating metabolic components of glucose reinforcement. Neuropsychopharmacology. 2017;42(12):2365–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Smith KR, et al. Taste-related reward is associated with weight loss following bariatric surgery. J Clin Invest. 2020;130(8):4370–81.

    PubMed  PubMed Central  Google Scholar 

  19. Terrill SJ, et al. Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback. Am J Physiol Regul Integr Comp Physiol. 2016;311(3):R592–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pascoli V, et al. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron. 2015;88(5):1054–66.

    Article  PubMed  CAS  Google Scholar 

  21. Thanos PK, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS One, 2015;10(6): p. e0125570.

  22. Carta I, et al. Cerebellar modulation of the reward circuitry and social behavior. Science, 2019;363(6424).

  23. Coimbra B, et al. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun. 2019;10(1):4138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lodge DJ, Grace AA. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci U S A. 2006;103(13):5167–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brodie MS, Pesold C, Appel SB. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res. 1999;23(11):1848–52.

    Article  PubMed  CAS  Google Scholar 

  26. Gatto GJ, et al. Ethanol self-infusion into the ventral tegmental area by alcohol-preferring rats. Alcohol. 1994;11(6):557–64.

    Article  PubMed  CAS  Google Scholar 

  27. Rodd ZA, et al. Recent advances in animal models of alcohol craving and relapse. Pharmacol Biochem Behav. 2004;79(3):439–50.

    Article  PubMed  CAS  Google Scholar 

  28. Steele KE, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.

    Article  PubMed  Google Scholar 

  29. Sirohi S, et al. Impact of Roux-en-Y gastric bypass surgery on appetite, alcohol intake behaviors, and midbrain ghrelin signaling in the rat. Obesity (Silver Spring). 2017;25(7):1228–36.

    Article  CAS  Google Scholar 

  30. Koopmann A, et al. Effects of cigarette smoking on plasma concentration of the appetite-regulating peptide ghrelin. Ann Nutr Metab. 2015;66(2–3):155–61.

    Article  PubMed  CAS  Google Scholar 

  31. Makris MC, et al. Ghrelin and obesity: identifying gaps and dispelling myths. A reappraisal in vivo. 2017;31(6):1047–50.

    PubMed  CAS  Google Scholar 

  32. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. al'Absi M, Lemieux A, Nakajima M. Peptide YY and ghrelin predict craving and risk for relapse in abstinent smokers. Psychoneuroendocrinology. 2014;49:253–9.

  34. Jerlhag E, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci U S A. 2009;106(27):11318–23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Skibicka KP, Dickson SL. Ghrelin and food reward: the story of potential underlying substrates. Peptides. 2011;32(11):2265–73.

    Article  PubMed  CAS  Google Scholar 

  36. Koopman HN. Function and evolution of specialized endogenous lipids in toothed whales. J Exp Biol. 2018;221(Pt Suppl 1).

  37. Farokhnia M, et al. Ghrelin: from a gut hormone to a potential therapeutic target for alcohol use disorder. Physiol Behav. 2019;204:49–57.

    Article  PubMed  CAS  Google Scholar 

  38. Xu HC, et al. Systematic review and meta-analysis of the change in ghrelin levels after Roux-en-Y gastric bypass. Obes Surg. 2019;29(4):1343–51.

    Article  PubMed  Google Scholar 

  39. Steinert RE, et al. Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97(1):411–63.

    Article  PubMed  Google Scholar 

  40. Alamuddin N, et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux-en-Y gastric bypass: an 18-Month Prospective Study. Obes Surg. 2017;27(6):1563–72.

    Article  PubMed  Google Scholar 

  41. Anderson B, et al. The impact of laparoscopic sleeve gastrectomy on plasma ghrelin levels: a systematic review. Obes Surg. 2013;23(9):1476–80.

    Article  PubMed  Google Scholar 

  42. Davis JF, et al. Roux en Y gastric bypass increases ethanol intake in the rat. Obes Surg. 2013;23(7):920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hajnal A et al. Alcohol reward is increased after Roux-en-Y gastric bypass in dietary obese rats with differential effects following ghrelin antagonism. PLoS One. 2012;7(11): p. e49121.

  44. Longo LP, Johnson B. Addiction: Part I. Benzodiazepines--side effects, abuse risk and alternatives. Am Fam Physician, 2000;61(7): p. 2121–8.

  45. Dirksen C, et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil. 2013;25(4):346-e255.

    Article  PubMed  CAS  Google Scholar 

  46. Melissas J, et al. Alterations of global gastrointestinal motility after sleeve gastrectomy: a prospective study. Ann Surg. 2013;258(6):976–82.

    Article  PubMed  Google Scholar 

  47. Meier P, Seitz HK. Age, alcohol metabolism and liver disease. Curr Opin Clin Nutr Metab Care. 2008;11(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  48. Woodard GA, et al. Impaired alcohol metabolism after gastric bypass surgery: a case-crossover trial. J Am Coll Surg. 2011;212(2):209–14.

    Article  PubMed  Google Scholar 

  49. Klockhoff H, Näslund I, Jones AW. Faster absorption of ethanol and higher peak concentration in women after gastric bypass surgery. Br J Clin Pharmacol. 2002;54(6):587–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Acevedo MB, et al. Sleeve gastrectomy surgery: when 2 alcoholic drinks are converted to 4. Surgery for Obesity and Related Diseases. 2018;14(3):277–83.

    Article  PubMed  Google Scholar 

  51. Hagedorn JC, et al. Does gastric bypass alter alcohol metabolism? Surg Obes Relat Dis. 2007;3(5): p. 543–8; discussion 548.

  52. Pepino MY, et al. Effect of Roux-en-Y gastric bypass surgery: converting 2 alcoholic drinks to 4. JAMA Surg. 2015;150(11):1096–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Steffen KJ, et al. Blood alcohol concentrations rise rapidly and dramatically after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2013;9(3):470–3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Polston JE, Glick SD. Music-induced context preference following cocaine conditioning in rats. Behav Neurosci. 2011;125(4):674–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ibrahim N, et al. New onset alcohol use disorder following bariatric surgery. Surg Endosc. 2019;33(8):2521–30.

    Article  PubMed  Google Scholar 

  56. Goldman MS, Darkes J. Alcohol expectancy multiaxial assessment: a memory network-based approach. Psychol Assess. 2004;16(1):4–15.

    Article  PubMed  Google Scholar 

  57. Rotter JB. Some implications of a social learning theory for the prediction of goal directed behavior from testing procedures. Psychol Rev. 1960;67:301–16.

    Article  PubMed  CAS  Google Scholar 

  58. Sher KJ, Rutledge PC. Heavy drinking across the transition to college: predicting first-semester heavy drinking from precollege variables. Addict Behav. 2007;32(4):819–35.

    Article  PubMed  Google Scholar 

  59. Schaefer LM et al. Eating expectancies and reinforcement learning: a state-based test of affect regulation and expectancy models in the natural environment. Eat Weight Disord, 2021.

  60. Sher KJ, et al. Stress-response-dampening effects of alcohol: attention as a mediator and moderator. J Abnorm Psychol. 2007;116(2):362–77.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Williams-Kerver GA, et al. Eating expectancies before bariatric surgery: assessment and associations with weight loss trajectories. Surg Obes Relat Dis. 2019;15(10):1793–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Buchwald H, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  PubMed  CAS  Google Scholar 

  63. Kofman MD, Lent MR, Swencionis C. Maladaptive eating patterns, quality of life, and weight outcomes following gastric bypass: results of an Internet survey. Obesity (Silver Spring). 2010;18(10):1938–43.

    Article  Google Scholar 

  64. Rutledge T, Groesz LM, Savu M. Psychiatric factors and weight loss patterns following gastric bypass surgery in a veteran population. Obes Surg. 2011;21(1):29–35.

    Article  PubMed  Google Scholar 

  65. Karmali S, et al. Weight recidivism post-bariatric surgery: a systematic review. Obes Surg. 2013;23(11):1922–33.

    Article  PubMed  Google Scholar 

  66. Herpertz S, et al. Health-related quality of life and psychological functioning 9 years after restrictive surgical treatment for obesity. Surg Obes Relat Dis. 2015;11(6):1361–70.

    Article  PubMed  Google Scholar 

  67. Sarwer DB, et al. Psychiatric diagnoses and psychiatric treatment among bariatric surgery candidates. Obes Surg. 2004;14(9):1148–56.

    Article  PubMed  Google Scholar 

  68. Greeley J, Swift W, Heather N. Depressed affect as a predictor of increased desire for alcohol in current drinkers of alcohol. Br J Addict. 1992;87(7):1005–12.

    Article  PubMed  CAS  Google Scholar 

  69. Fulton M, Srinivasan VN. obesity, stigma and discrimination, in StatPearls. 2021: Treasure Island (FL).

  70. Pont SJ et al. Stigma experienced by children and adolescents with obesity. Pediatrics, 2017;40(6).

  71. Sogg S, Gorman MJ. Interpersonal changes and challenges after weight-loss surgery. Primary Psychiatry. 2008;15(8):61–6.

    Google Scholar 

  72. Lee NK, Greeley JD, Oei TPS, Dean AJ. Desire to drink in low-and high-risk social drinkers: An experimental analogue of impaired control. Addict Res Theory. 2004;12(2):115–24.

    Article  Google Scholar 

  73. Gordon SM, et al. Inpatient desire to drink as a predictor of relapse to alcohol use following treatment. Am J Addict. 2006;15(3):242–5.

    Article  PubMed  Google Scholar 

  74. Chutuape MA, de Wit H. Relationship between subjective effects and drug preferences: ethanol and diazepam. Drug Alcohol Depend. 1994;34(3):243–51.

    Article  PubMed  CAS  Google Scholar 

  75. Fillmore MT. Cognitive preoccupation with alcohol and binge drinking in college students: alcohol-induced priming of the motivation to drink. Psychol Addict Behav. 2001;15(4):325–32.

    Article  PubMed  CAS  Google Scholar 

  76. McGrath E, Jones A, Field M. Acute stress increases ad-libitum alcohol consumption in heavy drinkers, but not through impaired inhibitory control. Psychopharmacology. 2016;233(7):1227–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Perkins KA, et al. The subjective and reinforcing effects of visual and olfactory stimuli in alcohol drinking. Exp Clin Psychopharmacol. 2003;11(4):269–75.

    Article  PubMed  Google Scholar 

  78. Davidson D, Swift R, Fitz E. Naltrexone increases the latency to drink alcohol in social drinkers. Alcohol Clin Exp Res. 1996;20(4):732–9.

    Article  PubMed  CAS  Google Scholar 

  79. Kaplan BA, et al. Understanding alcohol motivation using the alcohol purchase task: A methodological systematic review. Drug Alcohol Depend. 2018;191:117–40.

    Article  PubMed  Google Scholar 

  80. Kiselica AM, Webber TA, Bornovalova MA. Validity of the alcohol purchase task: a meta-analysis. Addiction. 2016;111(5):806–16.

    Article  PubMed  Google Scholar 

  81. Admon R, Pizzagalli DA. Dysfunctional reward processing in depression. Curr Opin Psychol. 2015;4:114–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The editors would like to thank Dr. Stephen Wonderlich for taking the time to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott G. Engel.

Ethics declarations

Conflict of Interest

Scott G. Engel, Lauren M. Schaefer, and Jon Davis each declare no potential conflicts of interest. Kristine Steffen reports grants from the NIH, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, S.G., Schaefer, L.M., Davis, J. et al. Review of Changes in the Reinforcing Effects of Alcohol in Weight Loss Surgery Patients. Curr Psychiatry Rep 23, 69 (2021). https://doi.org/10.1007/s11920-021-01281-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11920-021-01281-5

Keywords

Navigation