Skip to main content

Understanding the Connection Between the Gut–Brain Axis and Stress/Anxiety Disorders

Abstract

Purpose of Review

We review the association of the microbiota-gut-brain axis and anxiety disorder or stress.

Recent Finding

The microbiota–gut–brain axis mechanism encompasses a bidirectional relationship between the brain and gastrointestinal organs. Dysregulation of the microbiota–gut–brain axis has been actively revealed in the context of various psychiatric diseases such as neurodevelopmental disorders, schizophrenia, anxiety disorders, and depression.

Summary

We suggest that onset of anxiety disorders may be correlated with activation of a microbiota–gut–brain mechanism involving the immune system, neurotransmitters, and the hormonal system. By applying a microbiota–gut–brain axis mechanism, the possibility of using gastrointestinal system drugs such as probiotics and antibiotics as treatments for anxiety disorders is a possibility. Although modification of the microbiota–gut–brain axis mechanism has yet to be adopted clinically, it is expected that novel strategies employing this mechanism will be developed and deployed as new treatments not only for anxiety disorders, but also other psychiatric diseases.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baxter AJ, Scott KM, Vos T, Whiteford HA. Global prevalence of anxiety disorders: a systematic review and meta-regression. Psychol Med. 2013;43(5):897–910. https://doi.org/10.1017/S003329171200147X.

    CAS  Article  PubMed  Google Scholar 

  2. Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, Ustun TB. Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry. 2007;20(4):359–64. https://doi.org/10.1097/YCO.0b013e32816ebc8c.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Antony MM, Stein MB. Oxford handbook of anxiety and related disorders: Oxford University Press; 2008.

  4. Kessler RC, Ruscio AM, Shear K, Wittchen HU. Epidemiology of anxiety disorders. Curr Top Behav Neurosci. 2010;2:21–35.

    Article  Google Scholar 

  5. Fawcett J. Suicide and anxiety in DSM-5. Depress Anxiety. 2013;30(10):898–901. https://doi.org/10.1002/da.22058.

    Article  PubMed  Google Scholar 

  6. Baxter AJ, Vos T, Scott KM, Ferrari AJ, Whiteford HA. The global burden of anxiety disorders in 2010. Psychol Med. 2014;44(11):2363–74. https://doi.org/10.1017/S0033291713003243.

    CAS  Article  PubMed  Google Scholar 

  7. Ionescu DF, Niciu MJ, Mathews DC, Richards EM, Zarate CA Jr. Neurobiology of anxious depression: a review. Depress Anxiety. 2013;30(4):374–85. https://doi.org/10.1002/da.22095.

    Article  PubMed  PubMed Central  Google Scholar 

  8. •• Kim YK, Shin C. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Curr Neuropharmacol. 2018;16(5):559–73. https://doi.org/10.2174/1570159X15666170915141036This article investigated the microbiota-gut-brain axis and the mechanism of psychiatric diseases, and suggested therapeutic potential.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.

    Article  PubMed  Google Scholar 

  10. Kelly JR, Borre Y, C OB, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–18. https://doi.org/10.1016/j.jpsychires.2016.07.019.

    Article  PubMed  Google Scholar 

  11. Gupta S, Masand PS, Kaplan D, Bhandary A, Hendricks S. The relationship between schizophrenia and irritable bowel syndrome (IBS). Schizophr Res. 1997;23(3):265–8. https://doi.org/10.1016/s0920-9964(96)00099-0.

    CAS  Article  PubMed  Google Scholar 

  12. Filipovic BR, Filipovic BF. Psychiatric comorbidity in the treatment of patients with inflammatory bowel disease. World J Gastroenterol. 2014;20(13):3552–63. https://doi.org/10.3748/wjg.v20.i13.3552.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Eaton W, Mortensen PB, Agerbo E, Byrne M, Mors O, Ewald H. Coeliac disease and schizophrenia: population based case control study with linkage of Danish national registers. BMJ. 2004;328(7437):438–9. https://doi.org/10.1136/bmj.328.7437.438.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hemmings G. Schizophrenia. Nature. 1992;355(6358):291. https://doi.org/10.1038/355291d0.

    CAS  Article  PubMed  Google Scholar 

  15. Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics. 2012;130(Suppl 2):S160–8. https://doi.org/10.1542/peds.2012-0900N.

    Article  PubMed  Google Scholar 

  16. Chen YH, Bai J, Wu D, Yu SF, Qiang XL, Bai H, et al. Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response. J Affect Disord. 2019;259:56–66. https://doi.org/10.1016/j.jad.2019.08.014.

    CAS  Article  PubMed  Google Scholar 

  17. Turna J, Grosman Kaplan K, Anglin R, Patterson B, Soreni N, Bercik P, et al. The gut microbiome and inflammation in obsessive-compulsive disorder patients compared to age- and sex-matched controls: a pilot study. Acta Psychiatr Scand. 2020;142(4):337–47. https://doi.org/10.1111/acps.13175.

    CAS  Article  PubMed  Google Scholar 

  18. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(Suppl 1):S38–44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol. 2008;24(1):4–10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8.

    CAS  Article  PubMed  Google Scholar 

  20. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80. https://doi.org/10.1016/j.cell.2012.07.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Jasarevic E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress. 2015;1:81–8. https://doi.org/10.1016/j.ynstr.2014.10.005.

    Article  PubMed  Google Scholar 

  23. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165(7):1762–75. https://doi.org/10.1016/j.cell.2016.06.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics. 2012;129(5):e1121–8. https://doi.org/10.1542/peds.2011-2583.

    Article  PubMed  PubMed Central  Google Scholar 

  25. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A. 2015;112(35):11060–5. https://doi.org/10.1073/pnas.1502875112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Karlsson CL, Molin G, Cilio CM, Ahrne S. The pioneer gut microbiota in human neonates vaginally born at term-a pilot study. Pediatr Res. 2011;70(3):282–6. https://doi.org/10.1203/PDR.0b013e318225f765.

    Article  PubMed  Google Scholar 

  27. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):852. https://doi.org/10.1016/j.chom.2015.05.012.

    CAS  Article  PubMed  Google Scholar 

  28. Bordenstein SR, Theis KR. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 2015;13(8):e1002226. https://doi.org/10.1371/journal.pbio.1002226.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Rosenberg E, Zilber-Rosenberg I. Microbes drive evolution of animals and plants: the hologenome concept. mBio. 2016;7(2):e01395. https://doi.org/10.1128/mBio.01395-15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86(Suppl 1):13–5. https://doi.org/10.1016/j.earlhumdev.2010.01.004.

    Article  PubMed  Google Scholar 

  31. Huurre A, Kalliomaki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery - effects on gut microbiota and humoral immunity. Neonatology. 2008;93(4):236–40. https://doi.org/10.1159/000111102.

    Article  PubMed  Google Scholar 

  32. Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002;68(1):219–26. https://doi.org/10.1128/aem.68.1.219-226.2002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. • Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–32. https://doi.org/10.1016/j.cell.2016.10.027In this paper, they reviewed the relationship between neurodevelopment and microbial communities, and discussed the hypothesis that gut bacteria are essential contributors to the balance between development and function of the central nervous system, mental health and disease.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24(1):9–16. https://doi.org/10.1016/j.bbi.2009.05.058.

    Article  PubMed  Google Scholar 

  35. Whitehead WE, Palsson O, Jones KR. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology. 2002;122(4):1140–56. https://doi.org/10.1053/gast.2002.32392.

    Article  PubMed  Google Scholar 

  36. Mikocka-Walus A, Knowles SR, Keefer L, Graff L. Controversies revisited: a systematic review of the comorbidity of depression and anxiety with inflammatory bowel diseases. Inflamm Bowel Dis. 2016;22(3):752–62. https://doi.org/10.1097/MIB.0000000000000620.

    Article  PubMed  Google Scholar 

  37. Horst S, Chao A, Rosen M, Nohl A, Duley C, Wagnon JH, et al. Treatment with immunosuppressive therapy may improve depressive symptoms in patients with inflammatory bowel disease. Dig Dis Sci. 2015;60(2):465–70. https://doi.org/10.1007/s10620-014-3375-0.

    CAS  Article  PubMed  Google Scholar 

  38. Daulatzai MA. Chronic functional bowel syndrome enhances gut-brain axis dysfunction, neuroinflammation, cognitive impairment, and vulnerability to dementia. Neurochem Res. 2014;39(4):624–44. https://doi.org/10.1007/s11064-014-1266-6.

    CAS  Article  PubMed  Google Scholar 

  39. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. https://doi.org/10.3389/fncel.2015.00392.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. El Aidy S, Dinan TG, Cryan JF. Immune modulation of the brain-gut-microbe axis. Front Microbiol. 2014;5:146. https://doi.org/10.3389/fmicb.2014.00146.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62. https://doi.org/10.1126/science.1224203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75. https://doi.org/10.1113/jphysiol.2004.063388.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52. https://doi.org/10.1073/pnas.1010529108.

    Article  PubMed  Google Scholar 

  44. El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5(5):567–79. https://doi.org/10.1038/mi.2012.32.

    CAS  Article  PubMed  Google Scholar 

  45. El Aidy S, Derrien M, Aardema R, Hooiveld G, Richards SE, Dane A, et al. Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Benef Microbes. 2014;5(1):67–77. https://doi.org/10.3920/BM2013.0018.

    Article  PubMed  Google Scholar 

  46. •• Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in Neuropsychiatry. CNS Drugs. 2016;30(11):1019–41. https://doi.org/10.1007/s40263-016-0370-3In this paper, the microbiota-gut-brain axis was discussed, and various psychiatric diseases that could occur when dysregulation in this relationship were considered. Also, the possibility for the treatment of psychiatric diseases was suggested from the perspective of the microbiota-gut-brain axis.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RP. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun. 2008;22(3):354–66. https://doi.org/10.1016/j.bbi.2007.08.009.

    CAS  Article  PubMed  Google Scholar 

  48. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64, e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x.

    CAS  Article  PubMed  Google Scholar 

  49. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106.

    Article  PubMed  PubMed Central  Google Scholar 

  50. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48. https://doi.org/10.1016/j.bbr.2014.07.027.

    CAS  Article  PubMed  Google Scholar 

  51. Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1615):20120536. https://doi.org/10.1098/rstb.2012.0536.

    CAS  Article  Google Scholar 

  52. Gal EM, Sherman AD. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980;5(3):223–39. https://doi.org/10.1007/BF00964611.

    CAS  Article  PubMed  Google Scholar 

  53. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new ‘5-HT’s hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):702–21. https://doi.org/10.1016/j.pnpbp.2010.12.017.

    CAS  Article  Google Scholar 

  54. Lapin IP. Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety. Adv Exp Med Biol. 2003;527:121–5. https://doi.org/10.1007/978-1-4615-0135-0_14.

    CAS  Article  PubMed  Google Scholar 

  55. Hayaishi O. Properties and function of indoleamine 2,3-dioxygenase. J Biochem. 1976;79(4):13P–21P. https://doi.org/10.1093/oxfordjournals.jbchem.a131115.

    CAS  Article  PubMed  Google Scholar 

  56. Salazar A, Gonzalez-Rivera BL, Redus L, Parrott JM, O'Connor JC. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav. 2012;62(3):202–9. https://doi.org/10.1016/j.yhbeh.2012.03.010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73. https://doi.org/10.1038/mp.2012.77.

    CAS  Article  PubMed  Google Scholar 

  58. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74. https://doi.org/10.1016/j.jpsychires.2008.03.009.

    Article  PubMed  Google Scholar 

  59. Mohler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012;62(1):42–53. https://doi.org/10.1016/j.neuropharm.2011.08.040.

    CAS  Article  PubMed  Google Scholar 

  60. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage. 2016;125:988–95. https://doi.org/10.1016/j.neuroimage.2015.11.018.

    CAS  Article  PubMed  Google Scholar 

  61. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5. https://doi.org/10.1073/pnas.1102999108.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303(11):G1288–95. https://doi.org/10.1152/ajpgi.00341.2012.

    CAS  Article  PubMed  Google Scholar 

  63. Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci. 2013;7:9. https://doi.org/10.3389/fnsys.2013.00009.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM. Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):722–9. https://doi.org/10.1016/j.pnpbp.2010.04.011.

    CAS  Article  Google Scholar 

  65. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95. https://doi.org/10.1016/j.psyneuen.2012.03.024.

    CAS  Article  PubMed  Google Scholar 

  66. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26(4):510–20. https://doi.org/10.1111/nmo.12295.

    CAS  Article  PubMed  Google Scholar 

  67. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256–61. https://doi.org/10.4161/gmic.2.4.16108.

    Article  PubMed  Google Scholar 

  68. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007;61(3):355–61. https://doi.org/10.1038/sj.ejcn.1602546.

    CAS  Article  PubMed  Google Scholar 

  69. Tran N, Zhebrak M, Yacoub C, Pelletier J, Hawley D. The gut-brain relationship: investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J Affect Disord. 2019;252:271–7. https://doi.org/10.1016/j.jad.2019.04.043.

    Article  PubMed  Google Scholar 

  70. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73. https://doi.org/10.1016/j.bbi.2015.04.004.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ku Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Anxiety Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Kim, YK. Understanding the Connection Between the Gut–Brain Axis and Stress/Anxiety Disorders. Curr Psychiatry Rep 23, 22 (2021). https://doi.org/10.1007/s11920-021-01235-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11920-021-01235-x

Keywords

  • Microbiota–gut–brain axis
  • Anxiety disorder
  • Stress
  • Gut–brain axis
  • Probiotics