Early Life Stress and the Development of the Infant Gut Microbiota: Implications for Mental Health and Neurocognitive Development

Abstract

Purpose of Review

We review the state of the literature examining associations between early life stress (ELS), gut microbiota, and neurocognitive development and mental health in animals and humans. We identify gaps in current models and areas for future research.

Recent Findings

ELS is associated with changes in gut microbiota, which correspond to changes in affective and cognitive functioning in both animals and humans. Some of these ELS-induced psychological changes can be remedied by supplementation with probiotics in early life, suggesting a potential area for intervention for ELS-exposed children. Prenatal stress exposure is rarely studied in humans in relation to gut microbiota, but animal work has suggested important associations between prenatal stress and fetal programming that should be tested in humans.

Summary

The gut microbiota plays an important role in the association between ELS, neurocognitive development, and mental health. More work is needed to fully understand these associations in humans.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Blair C, Raver CC. Child development in the context of adversity: experiential canalization of brain and behavior. Am Psychol. 2012;67:309–18.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Troller-Renfree SV, Brito NH, Desai PM, Leon-Santos AG, Wiltshire CA, Motten SN, Meyer JS, Isler J, Fifer WP, Noble KG (2020) Infants of mothers with higher physiological stress show alterations in brain function. Dev Sci e12976

  3. 3.

    •• Callaghan BL, Fields A, Gee DG, et al. Mind and gut: Associations between mood and gastrointestinal distress in children exposed to adversity. Dev Psychopathol. 2020;32:309–28 This is one of the first studies in humans to examine associations between ELS, microbiota, neural activity, and mental health.

    PubMed  Google Scholar 

  4. 4.

    McLaughlin KA, Greif Green J, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC. Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Arch Gen Psychiatry. 2012;69:1151–60.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kessler RC, McLaughlin KA, Green JG, et al. Childhood adversities and adult psychopathology in the WHO world mental health surveys. Br J Psychiatry. 2010;197:378–85.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Madan JC, Farzan SF, Hibberd PL, Karagas MR. Normal neonatal microbiome variation in relation to environmental factors, infection and allergy. Curr Opin Pediatr. 2012;24:753–9.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    •• Gao W, Salzwedel AP, Carlson AL, et al. Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology. 2019;236:1641–51 This is one of the first studies in humans to implicate the gut microbiota in brain activity in infancy.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108:3047–52.

    CAS  PubMed Central  Google Scholar 

  10. 10.

    Gluckman PD, Hanson MA. The developmental origins of health and disease. In: Wintour EM, Owens JA, editors. Early life origins of health and disease. Boston: Springer US; 2006. p. 1–7.

    Google Scholar 

  11. 11.

    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85.

    CAS  PubMed  Google Scholar 

  12. 12.

    Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4:203–14.

    CAS  PubMed  Google Scholar 

  13. 13.

    Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:48.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12(Suppl 1):3–17.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ferretti P, Pasolli E, Tett A, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth mode, breastfeeding, pet exposure, and antibiotic use: associations with the gut microbiome and sensitization in children. Curr Allergy Asthma Rep. 2019;19:22.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Derrien M, Alvarez A-S, de Vos WM. The gut microbiota in the first decade of life. Trends Microbiol. 2019;27:997–1010.

    CAS  PubMed  Google Scholar 

  21. 21.

    • CSM C, Stylianakis AA, Richardson R. Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci. 2019;37:100627 This study provides evidence for the efficacy of probiotics in restoring normal neural activity for animals exposed to early life stress. This work could provide the foundation for such studies in humans.

    Google Scholar 

  22. 22.

    •• Michels N, Van de Wiele T, Fouhy F, O’Mahony S, Clarke G, Keane J. Gut microbiome patterns depending on children’s psychosocial stress: reports versus biomarkers. Brain Behav Immun. 2019;80:751–62 This is the only study in humans of which we are aware that examines specific stress physiology pathways and gut microbiota composition.

    PubMed  Google Scholar 

  23. 23.

    Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, et al. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019;574:543–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Callaghan BL, Cowan CSM, Richardson R. Treating generational stress: effect of paternal stress on development of memory and extinction in offspring is reversed by probiotic treatment. Psychol Sci. 2016;27:1171–80.

    PubMed  Google Scholar 

  25. 25.

    Cowan CSM, Callaghan BL, Richardson R. The effects of a probiotic formulation (Lactobacillus rhamnosus and L. helveticus) on developmental trajectories of emotional learning in stressed infant rats. Transl Psychiatry. 2016;6:e823.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Peng H-H, Tsai T-C, Huang W-Y, Wu H-M, Hsu K-S. Probiotic treatment restores normal developmental trajectories of fear memory retention in maternally separated infant rats. Neuropharmacology. 2019;153:53–62.

    CAS  PubMed  Google Scholar 

  27. 27.

    Leigh S-J, Kaakoush NO, Bertoldo MJ, Westbrook RF, Morris MJ. Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Transl Psychiatry. 2020;10:36.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Leigh S-J, Kaakoush NO, Westbrook RF, Morris MJ. Minocycline-induced microbiome alterations predict cafeteria diet-induced spatial recognition memory impairments in rats. Transl Psychiatry. 2020;10:92.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Magnusson KR, Hauck L, Jeffrey BM, Elias V, Humphrey A, Nath R, et al. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience. 2015;300:128–40.

    CAS  Google Scholar 

  30. 30.

    •• Carlson AL, Xia K, Azcarate-Peril MA, Goldman BD, Ahn M, Styner MA, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry. 2018;83:148–59 This is the first study in humans to show associations between the gut microbiota and cognitive development.

    PubMed  Google Scholar 

  31. 31.

    Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.

    CAS  PubMed  Google Scholar 

  32. 32.

    Duval ER, Javanbakht A, Liberzon I. Neural circuits in anxiety and stress disorders: a focused review. Ther Clin Risk Manag. 2015;11:115–26.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128:2224–39.

    PubMed  Google Scholar 

  34. 34.

    Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol Metab. 2016;5:317–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cowan CSM, Dinan TG, Cryan JF (2020) Annual research review: critical windows–the microbiota–gut–brain axis in neurocognitive development. J Child.

  36. 36.

    Firestein MR, Myers MM, Austin J, Stark RI, Barone JL, Ludwig RJ, et al. Perinatal antibiotics alter preterm infant EEG and neurobehavior in the family nurture intervention trial. Dev Psychobiol. 2019;61:661–9.

    PubMed  Google Scholar 

  37. 37.

    Pärtty A, Kalliomäki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res. 2015;77:823–8.

    PubMed  Google Scholar 

  38. 38.

    Isolauri E, Kalliomäki M, Laitinen K, Salminen S. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. Curr Pharm Des. 2008;14:1368–75.

    CAS  PubMed  Google Scholar 

  39. 39.

    Adams MR, Hall CJ. Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. Int J Food Sci Technol. 1988;23:287–92.

    CAS  Google Scholar 

  40. 40.

    Haarman M, Knol J. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl Environ Microbiol. 2006;72:2359–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21:153–60.

    CAS  PubMed  Google Scholar 

  42. 42.

    Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    CAS  PubMed  Google Scholar 

  44. 44.

    Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144:1394–401 1401.e1–4.

    CAS  PubMed  Google Scholar 

  45. 45.

    Kelsey C, Dreisbach C, Alhusen J, Grossmann T. A primer on investigating the role of the microbiome in brain and cognitive development. Dev Psychobiol. 2019;61:341–9.

    PubMed  Google Scholar 

  46. 46.

    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666–73.

    CAS  PubMed  Google Scholar 

  47. 47.

    Luk B, Veeraragavan S, Engevik M, Balderas M, Major A, Runge J, et al. Postnatal colonization with human “infant-type” Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS One. 2018;13:e0196510.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.

    PubMed  Google Scholar 

  50. 50.

    Huang Y, Shi X, Li Z, Shen Y, Shi X, Wang L, et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:3329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    PubMed  Google Scholar 

  52. 52.

    Jiang H-Y, Zhang X, Yu Z-H, Zhang Z, Deng M, Zhao J-H, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130–6.

    PubMed  Google Scholar 

  53. 53.

    Pfau ML, Ménard C, Russo SJ. Inflammatory mediators in mood disorders: therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2018;58:411–28.

    CAS  PubMed  Google Scholar 

  54. 54.

    Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4:215–22.

    CAS  PubMed  Google Scholar 

  55. 55.

    Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry. 2018;83:638–47.

    PubMed  Google Scholar 

  56. 56.

    Jiang H-Y, Zhou Y-Y, Zhou G-L, Li Y-C, Yuan J, Li X-H, et al. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav Brain Res. 2018;347:408–13.

    PubMed  Google Scholar 

  57. 57.

    Wang M, Wan J, Rong H, et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems. 2019. https://doi.org/10.1128/mSystems.00321-18.

  58. 58.

    Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2:256–61.

    PubMed  Google Scholar 

  59. 59.

    Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36:889–98.

    CAS  PubMed  Google Scholar 

  60. 60.

    Cowan CSM, Callaghan BL, Kan JM, Richardson R. The lasting impact of early-life adversity on individuals and their descendants: potential mechanisms and hope for intervention. Genes Brain Behav. 2016;15:155–68.

    CAS  PubMed  Google Scholar 

  61. 61.

    Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Callaghan BL, Tottenham N. The stress acceleration hypothesis: effects of early-life adversity on emotion circuits and behavior. Curr Opin Behav Sci. 2016;7:76–81.

    PubMed  Google Scholar 

  63. 63.

    De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun. 2015;6:7735.

    PubMed  Google Scholar 

  64. 64.

    Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002;966:290–303.

    CAS  PubMed  Google Scholar 

  65. 65.

    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Santos J, Yang PC, Söderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut. 2001;48:630–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev. 2010;81:131–48.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Davis EP, Sandman CA, Buss C, Wing DA, Head K. Fetal glucocorticoid exposure is associated with preadolescent brain development. Biol Psychiatry. 2013;74:647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Buss C, Davis EP, Shahbaba B, Pruessner JC, Head K, Sandman CA. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc Natl Acad Sci U S A. 2012;109:E1312–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Jašarević E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156:3265–76.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Jašarević E, Howard CD, Misic AM, Beiting DP, Bale TL. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep. 2017;7:44182.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    • Jašarević E, Howard CD, Morrison K, Misic A, Weinkopff T, Scott P, et al. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat Neurosci. 2018;21:1061–71 This study provides a potential mechanism whereby stress during pregnancy influences fetal programming and subsequent development that will be critical to investigate in humans.

    PubMed  Google Scholar 

  73. 73.

    •• Hantsoo L, Jašarević E, Criniti S, McGeehan B, Tanes C, Sammel MD, et al. Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy. Brain Behav Immun. 2019;75:240–50 This study provides some of the first evidence in humans of generational patterns of stress transmission and the potential influence of pregnancy stress on the developing fetus.

    PubMed  Google Scholar 

  74. 74.

    Callaghan BL, Richardson R. The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Transl Psychiatry. 2012;2:e138.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Pusceddu MM, El Aidy S, Crispie F, O’Sullivan O, Cotter P, Stanton C, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS One. 2015;10:e0139721.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Rincel M, Aubert P, Chevalier J, Grohard PA, Basso L, Monchaux de Oliveira C, et al. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun. 2019;80:179–92.

    PubMed  Google Scholar 

  77. 77.

    Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol. 1999;35:146–55.

    CAS  PubMed  Google Scholar 

  78. 78.

    Chitkara DK, van Tilburg MAL, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol. 2008;103:765–74 quiz 775.

    PubMed  Google Scholar 

  79. 79.

    Fahlman MM, McCaughtry N, Martin J, Shen B. Racial and socioeconomic disparities in nutrition behaviors: targeted interventions needed. J Nutr Educ Behav. 2010;42:10–6.

    PubMed  Google Scholar 

  80. 80.

    Yang I, Corwin EJ, Brennan PA, Jordan S, Murphy JR, Dunlop A. The infant microbiome: implications for infant health and neurocognitive development. Nurs Res. 2016;65:76–88.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah C. Vogel.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Reproductive Psychiatry and Women's Health

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vogel, S.C., Brito, N.H. & Callaghan, B.L. Early Life Stress and the Development of the Infant Gut Microbiota: Implications for Mental Health and Neurocognitive Development. Curr Psychiatry Rep 22, 61 (2020). https://doi.org/10.1007/s11920-020-01186-9

Download citation

Keywords

  • Gut microbiota
  • Neurocognitive development
  • Early life stress
  • Mental illness