Skip to main content

Digital Health Around Clinical High Risk and First-Episode Psychosis

Abstract

Purpose of Review

This review aims to examine relapse definitions and risk factors in psychosis as well as the role of technology in relapse predictions and risk modeling.

Recent Findings

There is currently no standard definition for relapse. Therefore, there is a need for data models that can account for the variety of factors involved in defining relapse. Smartphones have the ability to capture real-time, moment-to-moment assessment symptomology and behaviors via their variety of sensors and have high potential to be used to create prediction and risk modeling.

Summary

While there is still a need for further research on how technology can predict and model relapse, there are simple ways to begin incorporating technology for relapse prediction in clinical care.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Bogers JPAM, Hambarian G, Michiels M, Vermeulen J, de Haan L. Risk factors for psychotic relapse after dose reduction or discontinuation of antipsychotics in patients with chronic schizophrenia. A systematic review and meta-analysis. Schizophr Bull [Internet]. 2020 Mar 2;sgaa002. Available from: https://pubmed.ncbi.nlm.nih.gov/32118277. This is a comprehensive and recent review and meta-analysis highlighting many risk factors associated with relapse, particularly around medication non-adherence and specific thresholds for antipsychotic dose reduction.

  2. Fusar-Poli P, Cappucciati M, Bonoldi I, Hui LMC, Rutigliano G, Stahl DR, et al. Prognosis of brief psychotic episodes: a meta-analysis. JAMA psychiatry [Internet]. 2016 Mar;73(3):211–20 Available from: https://pubmed.ncbi.nlm.nih.gov/26764163.

  3. Fusar-Poli P, McGorry PD, Kane JM. Improving outcomes of first-episode psychosis: an overview. World Psychiatry [Internet]. 2017;16(3):251–65 Available from: https://pubmed.ncbi.nlm.nih.gov/28941089.

    Article  Google Scholar 

  4. Ascher-Svanum H, Zhu B, Faries DE, Salkever D, Slade EP, Peng X, et al. The cost of relapse and the predictors of relapse in the treatment of schizophrenia. BMC Psychiatry. 2010;10:2.

    PubMed  PubMed Central  Article  Google Scholar 

  5. Moncrieff J, Crellin NE, Long MA, Cooper RE, Stockmann T. Definitions of relapse in trials comparing antipsychotic maintenance with discontinuation or reduction for schizophrenia spectrum disorders: a systematic review. Schizophr Res [Internet]. 2019;S0920–9964(19):30391–3 Available from: https://pubmed.ncbi.nlm.nih.gov/31604607.

    Google Scholar 

  6. Lal S, Malla A, Marandola G, Thériault J, Tibbo P, Manchanda R, et al. “Worried about relapse”: family members’ experiences and perspectives of relapse in first-episode psychosis. Early Interv Psychiatry. 2019;13(1):24–9.

    PubMed  Article  Google Scholar 

  7. Alvarez-Jimenez M, Priede A, Hetrick SE, Bendall S, Killackey E, Parker AG, et al. Risk factors for relapse following treatment for first episode psychosis: a systematic review and meta-analysis of longitudinal studies. Schizophr Res. 2012;139(1–3):116–28.

    CAS  PubMed  Article  Google Scholar 

  8. •• Zhang T, Xu L, Li H, Woodberry KA, Kline ER, Jiang J, et al. Calculating individualized risk components using a mobile app-based risk calculator for clinical high risk of psychosis: findings from ShangHai at risk for psychosis (SHARP) program. Psychol Med [internet]. 2019;16:1–8 Available from: https://pubmed.ncbi.nlm.nih.gov/31839016. This is one of the first smartphone-based risk calculators to exhibit moderate to high sensitivity and specificity for relapse.

    Google Scholar 

  9. Olivares JM, Sermon J, Hemels M, Schreiner A. Definitions and drivers of relapse in patients with schizophrenia: a systematic literature review. Ann Gen Psychiatry [Internet]. 2013;12(1):32 Available from: https://pubmed.ncbi.nlm.nih.gov/24148707.

    Article  Google Scholar 

  10. Zipursky RB, Odejayi G, Agid O, Remington G. You say “schizophrenia” and I say “psychosis”: just tell me when I can come off this medication. Schizophr Res 2020 Feb;

  11. Lee BJ, Kim S-W, Kim JJ, Yu J-C, Lee KY, Won S-H, et al. Defining treatment response, remission, relapse, and recovery in first-episode psychosis: a survey among Korean experts. Psychiatry Investig. 2020;17(2):163–74.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Wang D, Gopal S, Baker S, Narayan VA. Trajectories and changes in individual items of positive and negative syndrome scale among schizophrenia patients prior to impending relapse. NPJ Schizophr. 2018;4(1):10.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Keks NA, Hope J, Adamopoulos V, Pring W, Tofler D, Macfarlane S, et al. Characteristics, diagnoses and risk profiles of inpatients readmitted within 28 days of discharge to an Australian private psychiatric hospital. Australas psychiatry Bull R Aust New Zeal Coll Psychiatr. 2020;1039856220901469.

  14. Porcelli S, Bianchini O, De Girolamo G, Aguglia E, Crea L, Serretti A. Clinical factors related to schizophrenia relapse. Int J Psychiatry Clin Pract. 2016;20(2):54–69.

    CAS  PubMed  Article  Google Scholar 

  15. Bergé D, Mané A, Salgado P, Cortizo R, Garnier C, Gomez L, et al. Predictors of relapse and functioning in first-episode psychosis: a two-year follow-up study. Psychiatr Serv. 2016;67(2):227–33.

    PubMed  Article  Google Scholar 

  16. Koutra K, Triliva S, Roumeliotaki T, Basta M, Simos P, Lionis C, et al. Impaired family functioning in psychosis and its relevance to relapse: a two-year follow-up study. Compr Psychiatry. 2015;62:1–12.

    PubMed  Article  Google Scholar 

  17. Saito Y, Sakurai H, Kane JM, Schooler NR, Suzuki T, Mimura M, et al. Predicting relapse with residual symptoms in schizophrenia: a secondary analysis of the PROACTIVE trial. Schizophr Res [Internet]. 2019/10/28. 2020;215:173–180. Available from: https://pubmed.ncbi.nlm.nih.gov/31672387

  18. Glick ID, Zamora D, Davis JM, Suryadevara U, Goldenson A, Kamis D. Are patients with schizophrenia better off with lifetime antipsychotic medication?: replication of a naturalistic, long-term, follow-up study of antipsychotic treatment. J Clin Psychopharmacol. 2020;40(2):145–8.

    PubMed  Article  Google Scholar 

  19. García S, Martínez-Cengotitabengoa M, López-Zurbano S, Zorrilla I, López P, Vieta E, et al. Adherence to antipsychotic medication in bipolar disorder and schizophrenic patients: a systematic review. J Clin Psychopharmacol. 2016;36(4):355–71.

    PubMed  PubMed Central  Article  Google Scholar 

  20. Phan SV. Medication adherence in patients with schizophrenia. Int J Psychiatry Med. 2016;51(2):211–9.

    PubMed  Article  Google Scholar 

  21. Cramer JA, Rosenheck R. Compliance with medication regimens for mental and physical disorders. Psychiatr Serv. 1998;49(2):196–201.

    CAS  PubMed  Article  Google Scholar 

  22. Yaegashi H, Kirino S, Remington G, Misawa F, Takeuchi H. Adherence to oral antipsychotics measured by electronic adherence monitoring in schizophrenia: a systematic review and meta-analysis. CNS Drugs 2020 Mar;

  23. Faurholt-Jepsen M, Frost M, Christensen EM, Bardram JE, Vinberg M, Kessing LV. Validity and characteristics of patient-evaluated adherence to medication via smartphones in patients with bipolar disorder: exploratory reanalyses on pooled data from the MONARCA I and II trials. Evid Based Ment Health [Internet]. 2020 Feb;23(1):2–7 Available from: https://pubmed.ncbi.nlm.nih.gov/32046986.

  24. Tessier A, Dupuy M, Baylé FJ, Herse C, Lange A-C, Vrijens B, et al. Brief interventions for improving adherence in schizophrenia: a pilot study using electronic medication event monitoring. Psychiatry Res [Internet]. 2020 Jan 15;112780. Available from: https://pubmed.ncbi.nlm.nih.gov/31954541

  25. Fozoonmayeh D, Le HV, Wittfoth E, Geng C, Ha N, Wang J, et al. A scalable smartwatch-based medication intake detection system using distributed machine learning. J Med Syst [Internet]. 2020 Feb 28;44(4):76. Available from: https://pubmed.ncbi.nlm.nih.gov/32112271

  26. Van Biesen W, Decruyenaere J, Sideri K, Cockbain J, Sterckx S. Remote digital monitoring of medication intake: methodological, medical, ethical and legal reflections. Acta Clin Belg [Internet]. 2019;23:1–8 Available from: https://pubmed.ncbi.nlm.nih.gov/31870225.

    Google Scholar 

  27. Conley RR. The burden of depressive symptoms in people with schizophrenia. Psychiatr Clin North Am. 2009;32(4):853–61.

    PubMed  Article  Google Scholar 

  28. Müller N. Mechanisms of relapse prevention in schizophrenia. Pharmacopsychiatry. 2004;37(Suppl 2):S141–7.

    PubMed  Article  Google Scholar 

  29. Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Möller H-J. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 1: acute treatment of schizophrenia. World J Biol psychiatry Off J World Fed Soc Biol Psychiatry. 2005;6(3):132–91.

    Article  Google Scholar 

  30. Winklbaur B, Ebner N, Sachs G, Thau K, Fischer G. Substance abuse in patients with schizophrenia. Dialogues Clin Neurosci. 2006;8(1):37–43.

    PubMed  PubMed Central  Google Scholar 

  31. Levy E, Pawliuk N, Joober R, Abadi S, Malla A. Medication-adherent first-episode psychosis patients also relapse: why? Can J Psychiatr. 2012;57(2):78–84.

    Article  Google Scholar 

  32. Ortiz-Medina MB, Perea M, Torales J, Ventriglio A, Vitrani G, Aguilar L, et al. Cannabis consumption and psychosis or schizophrenia development. Int J Soc Psychiatry. 2018;64(7):690–704.

    PubMed  Article  Google Scholar 

  33. Wisdom JP, Manuel JI, Drake RE. Substance use disorder among people with first-episode psychosis: a systematic review of course and treatment. Psychiatr Serv. 2011;62(9):1007–12.

    PubMed  PubMed Central  Article  Google Scholar 

  34. • Weibell MA, Hegelstad WTV, Auestad B, Bramness J, Evensen J, Haahr U, et al. The effect of substance use on 10-year outcome in first-episode psychosis. Schizophr Bull. 2017;43(4):843–51 This study examined substance use in first episode psychosis with a 10-year follow-up and demonstrated important windows for addressing abuse due to the longitudinal nature of the study.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Kazemi DM, Borsari B, Levine MJ, Li S, Lamberson KA, Matta LA. A systematic review of the mHealth interventions to prevent alcohol and substance abuse. J Health Commun. 2017;22(5):413–32.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Almond S, Knapp M, Francois C, Toumi M, Brugha T. Relapse in schizophrenia: costs, clinical outcomes and quality of life. Br J Psychiatry. 2004;184:346–51.

    PubMed  Article  Google Scholar 

  37. Moeller KE, Shireman TI, Liskow BI. Relapse rates in patients with schizophrenia receiving aripiprazole in comparison with other atypical antipsychotics. J Clin Psychiatry. 2006;67(12):1942–7.

    CAS  PubMed  Article  Google Scholar 

  38. Fond G, Bulzacka E, Boucekine M, Schürhoff F, Berna F, Godin O, et al. Machine learning for predicting psychotic relapse at 2 years in schizophrenia in the national FACE-SZ cohort. Prog Neuropsychopharmacol Biol Psychiatry [Internet]. 2018/12/12. 2019 Jun 8;92:8–18. Available from: https://pubmed.ncbi.nlm.nih.gov/30552914

  39. Hariman K, Cheng KM, Lam J, Leung SK, Lui SSY. Clinical risk model to predict 28-day unplanned readmission via the accident and emergency department after discharge from acute psychiatric units for patients with psychotic spectrum disorders. BJPsych open [Internet]. 2020;6(1):e13–3 Available from: https://pubmed.ncbi.nlm.nih.gov/31987061.

  40. Birnbaum ML, Ernala SK, Rizvi AF, Arenare E, Van Meter AR, De Choudhury M, et al. Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook. NPJ Schizophr. 2019;5(1):17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. •• Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J-P. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2018; This is one of the first studies to use anomaly detection on digital phenotyping data to predict a relapse event in an individual with schizophrenia.

  42. Eisner E, Bucci S, Berry N, Emsley R, Barrowclough C, Drake RJ. Feasibility of using a smartphone app to assess early signs, basic symptoms and psychotic symptoms over six months: a preliminary report. Schizophr Res. 2019;208:105–13.

    PubMed  PubMed Central  Article  Google Scholar 

  43. Spaniel F, Vohlídka P, Hrdlicka J, Kozený J, Novák T, Motlová L, et al. ITAREPS: information technology aided relapse prevention programme in schizophrenia. Schizophr Res. 2008;98(1–3):312–7.

    PubMed  Article  Google Scholar 

  44. Cella M, He Z, Killikelly C, Okruszek Ł, Lewis S, Wykes T. Blending active and passive digital technology methods to improve symptom monitoring in early psychosis. Early Interv Psychiatry [Internet]. 2019;13(5):1271–5 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/eip.12796.

    Article  Google Scholar 

  45. Torous J, Wisniewski H, Bird B, Carpenter E, David G, Elejalde E, et al. Creating a digital health smartphone app and digital phenotyping platform for mental health and diverse healthcare needs: an interdisciplinary and collaborative approach. J Technol Behav Sci [Internet]. 2019 Apr; Available from: https://doi.org/10.1007/s41347-019-00095-w.

  46. Wisniewski H, Henson P, Torous J. Using a smartphone app to identify clinically relevant behavior trends via symptom report, cognition scores, and exercise levels: a case series [Internet]. Frontiers in Psychiatry. 2019;10:652 Available from: https://www.frontiersin.org/article/10.3389/fpsyt.2019.00652.

  47. Torous JB, Chan SR, Gipson SY-MT, Kim JW, Nguyen T-Q, Luo J, et al. A hierarchical framework for evaluation and informed decision making regarding smartphone apps for clinical care. Psychiatr Serv. 2018;69(5):498–500.

    PubMed  Article  Google Scholar 

  48. Lagan S, Aquino P, Emerson MR, Fortuna K, Walker R, Torous J. Actionable health app evaluation: translating expert frameworks into objective metrics. npj Digit Med. 2020; forthcoming.

  49. App Evaluation Model [Internet]. [cited 2020 Jun 30]. Available from: https://www.psychiatry.org/psychiatrists/practice/mental-health-apps/app-evaluation-model

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Torous.

Ethics declarations

Conflict of Interest

Philip Henson, Hannah Wisniewski, and Charles Stromeyer IV each declare no potential conflicts of interest.

John Torous reports grants from Otsuka.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Child and Adolescent Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henson, P., Wisniewski, H., Stromeyer IV, C. et al. Digital Health Around Clinical High Risk and First-Episode Psychosis. Curr Psychiatry Rep 22, 58 (2020). https://doi.org/10.1007/s11920-020-01184-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-020-01184-x

Keywords

  • First-episode psychosis
  • Relapse
  • Technology
  • Smartphones