The Relationship Between Perinatal Mental Health and Stress: a Review of the Microbiome

Abstract

Purpose of Review

Our current understanding of the underlying mechanisms and etiologies of perinatal mood and anxiety disorders (PMADs) is not clearly identified. The relationship of stress-induced adaptations (i.e., the hypothalamic-pituitary-adrenal (HPA) axis, the autonomic nervous system (ANS), the immune system) and the microbiota are potential contributors to psychopathology exhibited in women during pregnancy and postpartum and should be investigated.

Recent Findings

The stress response activates the HPA axis and dysregulates the ANS, leading to the inhibition of the parasympathetic system. Sustained high levels of cortisol, reduced heart variability, and modulated immune responses increase the vulnerability to PMAD. Bidirectional communication between the nervous system and the microbiota is an important factor to alter host homeostasis and development of PMAD.

Summary

Future research in the relationship between the psychoneuroimmune system, the gut microbiota, and PMAD has the potential to be integrated in clinical practice to improve screening, diagnosis, and treatment.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Engert V, Vogel S, Efanov SI, Duchesne A, Corbo V, Ali N, et al. Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology. 2011;36:1294–302.

  2. 2.

    Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol. 2005;106:1071–83.

    Article  Google Scholar 

  3. 3.

    Andersson L, Sundström-Poromaa I, Wulff M, Åström M, Bixo M. Depression and anxiety during pregnancy and six months postpartum: a follow-up study. Acta Obstet Gynecol Scand. 2006;85:937–44.

    Article  Google Scholar 

  4. 4.

    Howard LM, Molyneaux E, Dennis C-L, Rochat T, Stein A, Milgrom J. Non-psychotic mental disorders in the perinatal period. Lancet Lond Engl. 2014;384:1775–88.

    Article  Google Scholar 

  5. 5.

    O’Hara MW, Wisner KL. Perinatal mental illness: definition, description and aetiology. Best Pract Res Clin Obstet Gynaecol. 2014;28:3–12.

    Article  Google Scholar 

  6. 6.

    Brummelte S, Galea LAM. Postpartum depression: etiology, treatment and consequences for maternal care. Horm Behav. 2016;77:153–66.

    Article  Google Scholar 

  7. 7.

    • Furtado M, Chow CHT, Owais S, Frey BN, Van Lieshout RJ. Risk factors of new onset anxiety and anxiety exacerbation in the perinatal period: a systematic review and meta-analysis. J Affect Disord. 2018;238:626–35 A systematic review that highlights the social, psychological, and biological factors associated with the onset or exacerbation of anxiety during the perinatal period.

    Article  Google Scholar 

  8. 8.

    Dennis C-L, Chung-Lee L. Postpartum depression help-seeking barriers and maternal treatment preferences: a qualitative systematic review. Birth. 2006;33:323–31.

    Article  Google Scholar 

  9. 9.

    Robertson E, Grace S, Wallington T, Stewart DE. Antenatal risk factors for postpartum depression: a synthesis of recent literature. Gen Hosp Psychiatry. 2004;26:289–95.

    Article  Google Scholar 

  10. 10.

    Kimmel M, Hess E, Roy PS, Palmer JT, Meltzer-Brody S, Meuchel JM, et al. Family history, not lack of medication use, is associated with the development of postpartum depression in a high-risk sample. Arch Womens Ment Health. 2015;18:113–21.

  11. 11.

    O’Hara MW, McCabe JE. Postpartum depression: current status and future directions. Annu Rev Clin Psychol. 2013;9:379–407.

    Article  Google Scholar 

  12. 12.

    Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144:36–49.

    Article  Google Scholar 

  13. 13.

    •• Rackers HS, Thomas S, Williamson K, Posey R, Kimmel MC. Emerging literature in the microbiota-brain axis and perinatal mood and anxiety disorders. Psychoneuroendocrinology. 2018;95:86–96 A systematic review of current literature focusing on the perinatal mood and anxiety disorders, microbiota, and interaction with the immune and stress systems.

    Article  Google Scholar 

  14. 14.

    Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

  15. 15.

    • Friebe A, Douglas AJ, Solano E, Blois SM, Hagen E, Klapp BF, et al. Neutralization of LPS or blockage of TLR4 signaling prevents stress-triggered fetal loss in murine pregnancy. J Mol Med. 2011;89:689–99 A study correlating bacterial taxa in gut microbiomes to major depressive disorder.

    CAS  Article  Google Scholar 

  16. 16.

    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  Google Scholar 

  17. 17.

    • Dinan TG, Cryan JF. Microbes, immunity and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–92 A brief overview of the intestinal microbiota, the interaction with the immune system, and impact on mental health.

    CAS  Article  Google Scholar 

  18. 18.

    Jašarević E, Howard CD, Misic AM, Beiting DP, Bale TL. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep [Internet]. 2017 [cited 2018 Aug 17];7. Available from: http://www.nature.com/articles/srep44182

  19. 19.

    Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.

    CAS  Article  Google Scholar 

  20. 20.

    DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci. 2015;112:11060–5.

    CAS  Article  Google Scholar 

  21. 21.

    Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25:397–407.

    CAS  Article  Google Scholar 

  22. 22.

    Mackos AR, Maltz R, Bailey MT. The role of the commensal microbiota in adaptive and maladaptive stressor-induced immunomodulation. Horm Behav. 2017;88:70–8.

    CAS  Article  Google Scholar 

  23. 23.

    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice: commensal microbiota and stress response. J Physiol. 2004;558:263–75.

  24. 24.

    Kudo N, Shinohara H, Kodama H. Heart rate variability biofeedback intervention for reduction of psychological stress during the early postpartum period. Appl Psychophysiol Biofeedback. 2014;39:203–11.

    Article  Google Scholar 

  25. 25.

    Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.

    CAS  Article  Google Scholar 

  26. 26.

    al’Absi M, Arnett DK. Adrenocortical responses to psychological stress and risk for hypertension. Biomed Pharmacother. 2000;54:234–44.

    Article  Google Scholar 

  27. 27.

    Balodis IM, Wynne-Edwards KE, Olmstead MC. The other side of the curve: examining the relationship between pre-stressor physiological responses and stress reactivity. Psychoneuroendocrinology. 2010;35:1363–73.

    Article  Google Scholar 

  28. 28.

    Allen AP, Kennedy PJ, Dockray S, Cryan JF, Dinan TG, Clarke G. The Trier Social Stress Test: principles and practice. Neurobiol Stress. 2017;6:113–26.

    Article  Google Scholar 

  29. 29.

    Pluess M, Bolten M, Pirke K-M, Hellhammer D. Maternal trait anxiety, emotional distress, and salivary cortisol in pregnancy. Biol Psychol. 2010;83:169–75.

    Article  Google Scholar 

  30. 30.

    Glynn LM, Davis EP, Sandman CA. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides. 2013;47:363–70.

    CAS  Article  Google Scholar 

  31. 31.

    • de Rezende MG, Garcia-Leal C, de Figueiredo FP, de Cavalli R, C, Spanghero MS, Barbieri MA, et al. Altered functioning of the HPA axis in depressed postpartum women. J Affect Disord. 2016;193:249–56 The study evaluates the correlation between the HPA axis function and major depressive episodes during the postpartum period.

  32. 32.

    Sandman CA, Glynn L, Schetter CD, Wadhwa P, Garite T, Chicz-DeMet A, et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides. 2006;27:1457–63.

  33. 33.

    • Ferguson EH, Di Florio A, Pearson B, Putnam KT, Girdler S, Rubinow DR, et al. HPA axis reactivity to pharmacologic and psychological stressors in euthymic women with histories of postpartum versus major depression. Arch Womens Ment Health. 2017;20:411–20 The study examines the link between the HPA axis dysregulation in women with a postpartum depression.

    Article  Google Scholar 

  34. 34.

    Field T, Diego M. Cortisol: the culprit prenatal stress variable. Int J Neurosci. 2008;118:1181–205.

    CAS  Article  Google Scholar 

  35. 35.

    Egliston K-A, McMahon C, Austin M-P. Stress in pregnancy and infant HPA axis function: conceptual and methodological issues relating to the use of salivary cortisol as an outcome measure. Psychoneuroendocrinology. 2007;32:1–13.

    CAS  Article  Google Scholar 

  36. 36.

    Zijlmans MAC, Riksen-Walraven JM, de Weerth C. Associations between maternal prenatal cortisol concentrations and child outcomes: a systematic review. Neurosci Biobehav Rev. 2015;53:1–24.

    CAS  Article  Google Scholar 

  37. 37.

    Gorman JM, Sloan RP. Heart rate variability in depressive and anxiety disorders. Am Heart J. 2000;140:77–83.

    CAS  Article  Google Scholar 

  38. 38.

    Yorbik O, Mutlu C, Ozturk O, Altinay DK, Tanju IA, Kurt I. Salivary alpha amylase levels in youths with anxiety disorders. Psychiatry Res. 2016;235:148–53.

    CAS  Article  Google Scholar 

  39. 39.

    Kunz-Ebrecht SR, Mohamed-Ali V, Feldman PJ, Kirschbaum C, Steptoe A. Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain Behav Immun. 2003;17:373–83.

    CAS  Article  Google Scholar 

  40. 40.

    Licht CMM, de Geus EJC, van Dyck R, Penninx BWJH. Association between anxiety disorders and heart rate variability in The Netherlands Study of Depression and Anxiety (NESDA): Psychosom Med. 2009;71:508–18.

  41. 41.

    • Kidwell M, Ellenbroek BA. Heart and soul: heart rate variability and major depression. Behav Pharmacol. 2018;29:152–64 A brief overview of heart rate variability and the correlation with psychiatric disorders.

    Article  Google Scholar 

  42. 42.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

  43. 43.

    • Izumi M, Manabe E, Uematsu S, Watanabe A, Moritani T. Autonomic nervous system activity and anxiety and depressive symptoms in mothers up to 2 years postpartum. J Psychosom Obstet Gynecol. 2016;37:51–6 A study correlating the autonomic nervous system and heart rate variability to symptoms of anxiety and depression during the postpartum period.

    Article  Google Scholar 

  44. 44.

    Verkuil B, Brosschot JF, Thayer JF. Cardiac reactivity to and recovery from acute stress: temporal associations with implicit anxiety. Int J Psychophysiol. 2014;92:85–91.

    Article  Google Scholar 

  45. 45.

    Bränn E, Papadopoulos F, Fransson E, White R, Edvinsson Å, Hellgren C, et al. Inflammatory markers in late pregnancy in association with postpartum depression—a nested case-control study. Psychoneuroendocrinology. 2017;79:146–59.

  46. 46.

    Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172:1075–91.

    Article  Google Scholar 

  47. 47.

    Osborne LM, Monk C. Perinatal depression—the fourth inflammatory morbidity of pregnancy? Psychoneuroendocrinology. 2013;38:1929–52.

    Article  Google Scholar 

  48. 48.

    Cooper TM, McKinley PS, Seeman TE, Choo T-H, Lee S, Sloan RP. Heart rate variability predicts levels of inflammatory markers: evidence for the vagal anti-inflammatory pathway. Brain Behav Immun. 2015;49:94–100.

    CAS  Article  Google Scholar 

  49. 49.

    • Gur TL, Shay L, Palkar AV, Fisher S, Varaljay VA, Dowd S, et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun. 2017;64:50–8 A study focusing on prenatal stress, changes in fecal microbiota, and the link between the microbiome changes to the neurodevelopment and behavioral changes in offspring.

    CAS  Article  Google Scholar 

  50. 50.

    Krishna G, Divyashri G, Prapulla SG, Muralidhara. A combination supplement of fructo- and xylo-oligosaccharides significantly abrogates oxidative impairments and neurotoxicity in maternal/fetal milieu following gestational exposure to acrylamide in rat. Neurochem Res. 2015;40:1904–18.

    CAS  Article  Google Scholar 

  51. 51.

    Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26:1155–62.

    CAS  Article  Google Scholar 

  52. 52.

    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    CAS  Article  Google Scholar 

  53. 53.

    Walker AK, Hawkins G, Sominsky L, Hodgson DM. Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrinology. 2012;37:1320–35.

    CAS  Article  Google Scholar 

  54. 54.

    Solati J, Kleehaupt E, Kratz O, Moll GH, Golub Y. Inverse effects of lipopolysaccharides on anxiety in pregnant mice and their offspring. Physiol Behav. 2015;139:369–74.

    CAS  Article  Google Scholar 

  55. 55.

    Okun E, Griffioen KJ, Rothman S, Wan R, Cong W-N, De Cabo R, et al. Toll-like receptors 2 and 4 modulate autonomic control of heart rate and energy metabolism. Brain Behav Immun. 2014;36:90–100.

    CAS  Article  Google Scholar 

  56. 56.

    Thayer JF, Fischer JE. Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J Intern Med. 2009;265:439–47.

    CAS  Article  Google Scholar 

  57. 57.

    Zijlmans MAC, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015;53:233–45.

    Article  Google Scholar 

  58. 58.

    Glover V. Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Pract Res Clin Obstet Gynaecol. 2014;28:25–35.

    Article  Google Scholar 

  59. 59.

    Lindsay KL, Buss C, Wadhwa PD, Entringer S. The interplay between nutrition and stress in pregnancy: implications for fetal programming of brain development. Biol Psychiatry [Internet]. 2018 [cited 2018 Sep 13]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006322318316354

  60. 60.

    Valenza G, Nardelli M, Lanata A, Gentili C, Bertschy G, Kosel M, et al. Predicting mood changes in bipolar disorder through heartbeat nonlinear dynamics. IEEE J Biomed Health Inform. 2016;20:1034–43.

  61. 61.

    Sun G, Shinba T, Kirimoto T, Matsui T. An objective screening method for major depressive disorder using logistic regression analysis of heart rate variability data obtained in a mental task paradigm. Front Psychiatry [Internet]. 2016 [cited 2018 Aug 20];7. Available from: https://doi.org/10.3389/fpsyt.2016.00180/full

  62. 62.

    Beckham AJ, Greene TB, Meltzer-Brody S. A pilot study of heart rate variability biofeedback therapy in the treatment of perinatal depression on a specialized perinatal psychiatry inpatient unit. Arch Womens Ment Health. 2013;16:59–65.

    Article  Google Scholar 

  63. 63.

    Francesco B, Maria Grazia B, Emanuele G, Valentina F, Sara C, Chiara F, et al. Linear and nonlinear heart rate variability indexes in clinical practice. Comput Math Methods Med. 2012;2012:1–5.

  64. 64.

    Park H-J. Heart rate variability as a measure of disease state in irritable bowel syndrome. Asian Nurs Res. 2008;2:5–16.

    Article  Google Scholar 

  65. 65.

    Xhyheri B, Manfrini O, Mazzolini M, Pizzi C, Bugiardini R. Heart rate variability today. Prog Cardiovasc Dis. 2012;55:321–31.

    Article  Google Scholar 

  66. 66.

    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U A. 2011;108:16050–5.

  67. 67.

    Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 2014;26:1615–27.

    CAS  Article  Google Scholar 

  68. 68.

    Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murphy R, et al. Effect of Lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine. 2017;24:159–65.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mary C. Kimmel.

Ethics declarations

Conflict of Interest

Nusiebeh Redpath declares no conflict of interest.

Hannah S. Rackers reports grants from the National Institute of Mental Health and the Brain and Behavior Foundation.

Mary C. Kimmel reports grants from the National Institute of Mental Health and the Brain and Behavior Foundation and payment supplied by grant from Sage Therapeutics for lectures on perinatal depression, and personal fees from UpToDate for two articles written.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Reproductive Psychiatry and Women’s Health

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Redpath, N., Rackers, H.S. & Kimmel, M.C. The Relationship Between Perinatal Mental Health and Stress: a Review of the Microbiome. Curr Psychiatry Rep 21, 18 (2019). https://doi.org/10.1007/s11920-019-0998-z

Download citation

Keywords

  • Heart rate variability
  • Psychosocial stress
  • Depression
  • Anxiety
  • Pregnancy
  • Microbiota