Skip to main content

Advertisement

Log in

Diagnosis and Management of Neuropsychiatric Symptoms in Alzheimer’s Disease

  • Complex Medical-Psychiatric Issues (MB Riba, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To explore the most recent developments in the effective diagnosis and treatment of neuropsychiatric symptoms (NPS) in Alzheimer’s disease (AD).

Recent Findings

The clinical diagnosis of NPS in AD is facilitated by the use of the Neuropsychiatric Inventory (NPI). CT and MRI scans can be useful for detecting structural changes indicating AD. Other promising diagnostic methodologies that are less frequently used in the clinical setting include positron emission tomography (PET) scans for detecting amyloid and blood tests for detecting serum biomarkers. Numerous pharmaceutical agents have been studied for their use in managing NPS, with antipsychotics being popular for managing agitation but also having significant side effects. Non-pharmacological interventions, such as reminiscence therapy and the Describe, Investigate, Create, Evaluate (DICE) approach may be able to provide treatment without such adverse effects.

Summary

Diagnosing AD and the comorbid NPS remains primarily a clinical endeavor with CT and MRI scans sometimes used, but evidence is amassing for the use of other imaging modalities and different lab tests for convenient and empiric diagnosis of AD to distinguish it from other psychiatric illnesses. The number of pharmacologic treatments for NPS that are safe as well as efficacious remains limited, yet non-pharmacologic interventions have clear clinical utility. In addition to searching for more successful pharmacological treatments, further research should focus on novel diagnostic tests and non-pharmacologic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. No Author (2018) 2018 Alzheimer’s disease facts and figures. https://www.alz.org/facts/. Accessed 4 Apr 2018.

  2. No Author (2018) Fact sheet. Alzheimer’s association. http://act.alz.org/site/DocServer/2012_Costs_Fact_Sheet_version_2.pdf?docID=7161. Accessed July 20th, 2018.

  3. •• Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord. 2016;190:264–71 This recent meta-analysis looks at pertinent studies of AD from 1964 to 2014 to determine the most frequent NPS in AD patients.

    Article  PubMed  Google Scholar 

  4. Steinberg M, Shao H, Zandi P, Lyketsos CG, Welsh-Bohmer KA, Norton MC, et al. Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: the Cache County study. International journal of geriatric psychiatry. 2008;23(2):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. •• Peters ME, Schwartz S, Han D, Rabins PV, Steinberg M, Tschanz JT, et al. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: the Cache County Dementia Progression Study. Am J Psychiatry. 2015;172(5):460–5 This cluster analysis of the different NPS identifies which ones can herald a more rapid decline and increased mortality in AD patients.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, et al. Apolipoprotein E, dementia, and cortical deposition of β-amyloid protein. N Engl J Med. 1995;333(19):1242–8.

    Article  CAS  PubMed  Google Scholar 

  8. Iqbal K, Alonso AD, Chen S, Chohan MO, El-Akkad E, Gong CX, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2005;1739(2–3):198–210.

    Article  CAS  Google Scholar 

  9. Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harbor perspectives in medicine. 2012;2(4):a006213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Nowrangi MA, Lyketsos CG, Rosenberg PB. Principles and management of neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimers Res Ther. 2015;7(1):12 This review article posits that NPS in AD are related to the damage in discrete brain regions that together are essential for adequate attention, mood regulation, and behavior control.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • Sampath D, Sathyanesan M, Newton SS. Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal–prefrontal cortex dysconnectivity. Neuropsychiatr Dis Treat. 2017;13:1509 This review of fMRI studies in AD patients illustrates the role of the hypothalamic-prefrontal cortex in AD and major depressive disorder (MDD), and also identifies the different fMRI features between these illnesses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.

    Article  CAS  PubMed  Google Scholar 

  13. • Šimić G, Leko MB, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38 This comprehensive review article focuses on the monoamine changes in AD and the evidence for how changes in the levels of monoamines such as dopamine and serotonin can yield NPS.

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez MJ, Lai MK, Tordera RM, Francis PT. Serotonergic therapies for cognitive symptoms in Alzheimer’s disease: rationale and current status. Drugs. 2014;74(7):729–36.

    Article  CAS  PubMed  Google Scholar 

  15. Lai MK, Tsang SW, Francis PT, Esiri MM, Keene J, Hope T, et al. Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Res. 2003;974(1–2):82–7.

    Article  CAS  PubMed  Google Scholar 

  16. Le Heron C, Apps MA, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia. 2017.

  17. Lei S. Serotonergic modulation of neural activities in the entorhinal cortex. International journal of physiology, pathophysiology and pharmacology. 2012;4(4):201.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ouchi Y, Yoshikawa E, Futatsubashi M, Yagi S, Ueki T, Nakamura K. Altered brain serotonin transporter and associated glucose metabolism in Alzheimer disease. J Nucl Med. 2009;50(8):1260–6.

    Article  PubMed  Google Scholar 

  19. Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O, et al. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney Memory and Aging Study. Psychoneuroendocrinology. 2012;37(9):1521–30.

    Article  CAS  PubMed  Google Scholar 

  20. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.

    Article  CAS  PubMed  Google Scholar 

  21. • Barron H, Hafizi S, Andreazza AC, Mizrahi R. Neuroinflammation and oxidative stress in psychosis and psychosis risk. Int J Mol Sci. 2017;18(3):651 An updated look at the evidence for how neuroinflammation can lead to schizophrenia and the clinical implications for this information.

    Article  CAS  PubMed Central  Google Scholar 

  22. Banerjee A, Khemka VK, Roy D, Dhar A, Roy TK, Biswas A, et al. Role of pro-inflammatory cytokines and vitamin D in probable Alzheimer’s disease with depression. Aging and disease. 2017;8(3):267.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, et al. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012;122(4):1377–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep. 2016;13(4):3391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22(12):1519–25.

    Article  PubMed  Google Scholar 

  26. Wallin K, Solomon A, Kåreholt I, Tuomilehto J, Soininen H, Kivipelto M. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J Alzheimers Dis. 2012;31(3):669–76.

    Article  PubMed  Google Scholar 

  27. Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry. 2013;202(5):329–35.

    Article  PubMed  PubMed Central  Google Scholar 

  28. •• Wang J, Tan L, Wang HF, Tan CC, Meng XF, Wang C, et al. Anti-inflammatory drugs and risk of Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis. 2015;44(2):385–96 Meta-analysis finding the capacity for NSAID use to decrease the risk of Alzheimer’s disease, further illustrating a link between inflammation and AD as well as arguing for more established studies to look into the role of anti-inflammatory agents to reduce the risk of dementia.

    Article  CAS  PubMed  Google Scholar 

  29. • Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308 This seminal article proposed the NPI for diagnosing psychiatric symptoms in patients with dementia.

    Article  CAS  PubMed  Google Scholar 

  30. De Medeiros K, Robert P, Gauthier S, Stella F, Politis A, Leoutsakos J, et al. The Neuropsychiatric Inventory-Clinician rating scale (NPI-C): reliability and validity of a revised assessment of neuropsychiatric symptoms in dementia. Int Psychogeriatr. 2010;22(6):984–94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wood S, Cummings JL, Hsu MA, Barclay T, Wheatley MV, Yarema KT, et al. The use of the neuropsychiatric inventory in nursing home residents: characterization and measurement. Am J Geriatr Psychiatry. 2000;8(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  32. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a brief clinical form of the Neuropsychiatric Inventory. The Journal of neuropsychiatry and clinical neurosciences. 2000;12(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  33. David R, Koulibaly M, Benoit M, Garcia R, Caci H, Darcourt J, et al. Striatal dopamine transporter levels correlate with apathy in neurodegenerative diseases: a SPECT study with partial volume effect correction. Clin Neurol Neurosurg. 2008;110(1):19–24.

    Article  PubMed  Google Scholar 

  34. Sultzer DL, Melrose R, Campa OR, Achamallah N, Harwood D, Brody A, et al. Cholinergic receptor imaging in Alzheimer’s disease: method and early results, in annual meeting of the American Association for Geriatric Psychiatry. Am J Geriatr Psychiatry. 2010;18:S71–2.

    Article  Google Scholar 

  35. Richard E, Schmand B, Eikelenboom P, Yang SC, Ligthart SA, Van Charante EM, et al. Symptoms of apathy are associated with progression from mild cognitive impairment to Alzheimer’s disease in non-depressed subjects. Dement Geriatr Cogn Disord. 2012;33(2–3):204–9.

    Article  CAS  PubMed  Google Scholar 

  36. Gonfrier S, Andrieu S, Renaud D, Vellas B, Robert PH. Course of neuropsychiatric symptoms during a 4-year follow up in the REAL-FR cohort. J Nutr Health Aging. 2012;16(2):134–7.

    Article  CAS  PubMed  Google Scholar 

  37. • Sahin S, Önal TO, Cinar N, Bozdemir M, Çubuk R, Karsidag S. Distinguishing depressive pseudodementia from Alzheimer disease: a comparative study of hippocampal volumetry and cognitive tests. Dementia and geriatric cognitive disorders extra. 2017;7(2):230–9 A recent study of patients with AD that detected imaging changes to act as biomarkers for distinguishing pseudodementia from AD.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kang H, Zhao F, You L, Giorgetta C. Pseudo-dementia: a neuropsychological review. Annals of Indian Academy of Neurology. 2014;17(2):147.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Small GW, Jarvik LF, Liston EH. Diagnosis and treatment of dementia in the aged. West J Med. 1981;135(6):469.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. • Van der Mussele S, Mariën P, Saerens J, Somers N, Goeman J, De Deyn PP, et al. Psychosis associated behavioral and psychological signs and symptoms in mild cognitive impairment and Alzheimer’s dementia. Aging Ment Health. 2015;19(9):818–28 This study of patients with AD and mild cognitive impairment found that psychotic symptoms were far more prevalent in patients with full-blown dementia than those with MCI.

    Article  PubMed  Google Scholar 

  41. Jeste DV, Finkel SI. Psychosis of Alzheimer’s disease and related dementias. Am J Geriatr Psychiatry. 2000;8:29–34.

    Article  CAS  PubMed  Google Scholar 

  42. Murray PS, Kumar S, DeMichele-Sweet MA, Sweet RA. Psychosis in Alzheimer’s disease. Biol Psychiatry. 2014;75(7):542–52.

    Article  PubMed  Google Scholar 

  43. Ropacki SA, Jeste DV. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: a review of 55 studies published from 1990 to 2003. Am J Psychiatr. 2005;162(11):2022–30.

    Article  PubMed  Google Scholar 

  44. Scharre DW, Chang SI, Nagaraja HN, Park A, Adeli A, Agrawal P, et al. Paired studies comparing clinical profiles of Lewy body dementia with Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 2016;54(3):995–1004.

    Article  PubMed  Google Scholar 

  45. Ballard C, Holmes C, McKeith I, Neill D, O’Brien J, Cairns N, et al. Psychiatric morbidity in dementia with Lewy bodies: a prospective clinical and neuropathological comparative study with Alzheimer’s disease. Am J Psychiatr. 1999;156(7):1039–45.

    CAS  PubMed  Google Scholar 

  46. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies fourth consensus report of the DLB consortium. Neurology. 2017;89(1):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yaffe K, Freimer D, Chen H, Asao K, Rosso A, Rubin S, et al. Olfaction and risk of dementia in a biracial cohort of older adults. Neurology. 2017;88(5):456–62.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lafaille-Magnan ME, Poirier J, Etienne P, Tremblay-Mercier J, Frenette J, Rosa-Neto P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology. 2017;89(4):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Price JL Olfactory higher centers anatomy. In Encyclopedia of neuroscience. Squire LR, editor. Elsevier; 2009.

  50. Cerejeira J, Lagarto L, Mukaetova-Ladinska E. Behavioral and psychological symptoms of dementia. Front Neurol. 2012;3:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Romero AP, Garrido SG. The importance of behavioural and pyschological symptoms in Alzheimer disease. Neurología (English Edition) 2018.

  52. Atri A Imaging of neurodegenerative cognitive and behavioral disorders: practical considerations for dementia clinical practice. In Handbook of clinical neurology 2016 (Vol. 136, pp. 971–984). Elsevier.

  53. Maruszak A, Thuret S. Why looking at the whole hippocampus is not enough—a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer’s disease diagnosis. Front Cell Neurosci. 2014;8:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• Lui S, Zhou XJ, Sweeney JA, Gong Q. Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology. 2016;281(2):357–72 Recent overview of neurologic imaging for diagnosis psychiatric disorders.

    Article  PubMed  Google Scholar 

  55. Haukvik UK, Hartberg CB, Agartz I. Schizophrenia--what does structural MRI show? Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke. 2013;133(8):850–3.

    Article  Google Scholar 

  56. Wang X, Wang J, He Y, Li H, Yuan H, Evans A, et al. Apolipoprotein E ε4 modulates cognitive profiles, hippocampal volume, and resting-state functional connectivity in Alzheimer’s disease. J Alzheimers Dis. 2015;45(3):781–95.

    Article  CAS  PubMed  Google Scholar 

  57. Xiang Q, Wang Y, Zhang J, Li Y, Xiao Z, Jiang K, et al. Progressive brain changes in the early stage of schizophrenia: a combined structural MRI and DTI study. Neuropsychiatry (London). 2018;8(2):523–32.

    Google Scholar 

  58. • Amen DG, Krishnamani P, Meysami S, Newberg A, Raji CA. Classification of depression, cognitive disorders, and co-morbid depression and cognitive disorders with perfusion SPECT neuroimaging. J Alzheimers Dis. 2017;57(1):253–66 This retrospective study of SPECT scans in patients with depression and cognitive disorders is one of the first to not only show the clinical utility of SPECT scans in diagnosing dementia but also to isolate which brain regions are most hypoperfused.

    Article  PubMed  Google Scholar 

  59. Salmon E. Functional brain imaging applications to differential diagnosis in the dementias. Curr Opin Neurol. 2002;15(4):439–44.

    Article  PubMed  Google Scholar 

  60. Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, et al. Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia. Neurobiol Aging. 2014;35(1):143–51.

    Article  PubMed  Google Scholar 

  61. Bahrampour T PET scans show how many Alzheimer’s patients may not actually have the disease. The Washington Post. Published July 19th, 2017. https://www.washingtonpost.com/national/health-science/brain-scans-show-many-alzheimers-patients-may-not-actually-have-the-disease/2017/07/18/52013620-6bf2-11e7-9c15-177740635e83_story.html?noredirect=on&utm_term=.4a18fad07f33

  62. Rogers MB In Clinical use, amyloid scans change two-thirds of treatment plans [Internet]. Alzforum. 2017 [cited 2018May7]. Available from: https://www.alzforum.org/news/conference-coverage/clinical-use-amyloid-scans-change-two-thirds-treatment-plans

  63. •• Sharma N, Singh AN. Exploring biomarkers for Alzheimer’s disease. J Clin Diagn Res. 2016;10(7):KE01 A thorough and up-to-date overview of the laboratory findings that can unearth potential biomarkers for Alzheimer’s disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koyama A, Okereke OI, Yang T, Blacker D, Selkoe DJ, Grodstein F. Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch Neurol. 2012;69(7):824–31.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554(7691):249–54.

    Article  CAS  PubMed  Google Scholar 

  66. Lövheim H, Elgh F, Johansson A, Zetterberg H, Blennow K, Hallmans G, et al. Plasma concentrations of free amyloid β cannot predict the development of Alzheimer’s disease. Alzheimers Dement. 2017;13(7):778–82.

    Article  PubMed  Google Scholar 

  67. Popp J, Oikonomidi A, Tautvydaitė D, Dayon L, Bacher M, Migliavacca E, et al. Markers of neuroinflammation associated with Alzheimer’s disease pathology in older adults. Brain Behav Immun. 2017;62:203–11.

    Article  CAS  PubMed  Google Scholar 

  68. King E, O’Brien JT, Donaghy P, Morris C, Barnett N, Olsen K, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018;89(4):339–45.

    Article  PubMed  Google Scholar 

  69. Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 2015;20(10):1188–96.

    Article  CAS  PubMed  Google Scholar 

  70. Pogue AI, Lukiw WJ. Up-regulated pro-inflammatory microRNAs (miRNAs) in Alzheimer’s disease (AD) and age-related macular degeneration (AMD). Cell Mol Neurobiol. 2018;38(5):1021–31.

    Article  CAS  PubMed  Google Scholar 

  71. • Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and gene expression profiles in Alzheimer’s disease: a meta-analysis approach. Sci Rep. 2018;8(1):4767 In addition to summarizing the miRNAs with expressions that correlate with AD, this meta-analysis also identifies which miRNAs are upregulated and which are downregulated, as well as the genes transcribed from these miRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schneider LS, Tariot PN, Dagerman KS, Davis SM, Hsiao JK, Ismail MS, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer’s disease. N Engl J Med. 2006;355(15):1525–38.

    Article  CAS  PubMed  Google Scholar 

  73. Maust DT, Kim HM, Seyfried LS, Chiang C, Kavanagh J, Schneider LS, et al. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA psychiatry. 2015;72(5):438–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Corbett A, Burns A, Ballard C. Don’t use antipsychotics routinely to treat agitation and aggression in people with dementia. BMJ. 2014;349(g6420):25368388.

    Google Scholar 

  75. Gerhard T, Huybrechts K, Olfson M, Schneeweiss S, Bobo WV, Doraiswamy PM, et al. Comparative mortality risks of antipsychotic medications in community-dwelling older adults. Br J Psychiatry. 2014;205(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  76. Kales HC, Kim HM, Zivin K, Valenstein M, Seyfried LS, Chiang C, et al. Risk of mortality among individual antipsychotics in patients with dementia. Am J Psychiatr. 2012;169(1):71–9.

    Article  PubMed  Google Scholar 

  77. Huybrechts KF, Gerhard T, Crystal S, Olfson M, Avorn J, Levin R, et al. Differential risk of death in older residents in nursing homes prescribed specific antipsychotic drugs: population based cohort study. BMJ. 2012;344:e977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rossom RC, Rector TS, Lederle FA, Dysken MW. Are all commonly prescribed antipsychotics associated with greater mortality in elderly male veterans with dementia? J Am Geriatr Soc. 2010;58(6):1027–34.

    Article  PubMed  Google Scholar 

  79. Schneider LS, Dagerman K, Insel PS. Efficacy and adverse effects of atypical antipsychotics for dementia: meta-analysis of randomized, placebo-controlled trials. Am J Geriatr Psychiatry. 2006;14(3):191–210.

    Article  PubMed  Google Scholar 

  80. Sultzer DL, Davis SM, Tariot PN, Dagerman KS, Lebowitz BD, Lyketsos CG, et al. Clinical symptom responses to atypical antipsychotic medications in Alzheimer’s disease: phase 1 outcomes from the CATIE-AD effectiveness trial. Am J Psychiatr. 2008;165(7):844–54.

    Article  PubMed  Google Scholar 

  81. De Deyn P, Jeste DV, Swanink R, Kostic D, Breder C, Carson WH, et al. Aripiprazole for the treatment of psychosis in patients with Alzheimer’s disease: a randomized, placebo-controlled study. J Clin Psychopharmacol. 2005;25(5):463–7.

    Article  PubMed  Google Scholar 

  82. •• Wang J, Yu JT, Wang HF, Meng XF, Wang C, Tan CC, et al. Pharmacological treatment of neuropsychiatric symptoms in Alzheimer’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86:101–9 A very helpful meta-analysis that compares and contrasts different classes of pharmacologics for the management of NPS in AD.

    Article  PubMed  Google Scholar 

  83. Mintzer JE, Tune LE, Breder CD, Swanink R, Marcus RN, McQuade RD, et al. Aripiprazole for the treatment of psychoses in institutionalized patients with Alzheimer dementia: a multicenter, randomized, double-blind, placebo-controlled assessment of three fixed doses. Am J Geriatr Psychiatry. 2007;15(11):918–31.

    Article  PubMed  Google Scholar 

  84. Yohanna D, Cifu AS. Antipsychotics to treat agitation or psychosis in patients with dementia. JAMA. 2017;318(11):1057–8.

    Article  PubMed  Google Scholar 

  85. •• Reus VI, Fochtmann LJ, Eyler AE, Hilty DM, Horvitz-Lennon M, Jibson MD, et al. The American Psychiatric Association practice guideline on the use of antipsychotics to treat agitation or psychosis in patients with dementia. Am J Psychiatr. 2016;173(5):543–6 The most recent APA guidelines on using antipsychotics in patients with Alzheimer’s dementia.

    Article  PubMed  Google Scholar 

  86. • Tampi RR, Tampi DJ, Balachandran S. Antipsychotics, antidepressants, anticonvulsants, melatonin, and benzodiazepines for behavioral and psychological symptoms of dementia: a systematic review of meta-analyses. Current Treatment Options in Psychiatry. 2017;4(1):55–79 An especially helpful look at the many different medications proposed for treating NPS.

    Article  Google Scholar 

  87. Di Santo SG, Prinelli F, Adorni F, Caltagirone C, Musicco M. A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and memantine in relation to severity of Alzheimer’s disease. J Alzheimers Dis. 2013;35(2):349–61.

    Article  CAS  PubMed  Google Scholar 

  88. Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;41(2):615–31.

    Article  CAS  PubMed  Google Scholar 

  89. Gauthier S, Loft H, Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: a pooled data analysis. International journal of geriatric psychiatry. 2008;23(5):537–45.

    Article  CAS  PubMed  Google Scholar 

  90. Orgeta V, Tabet N, Nilforooshan R, Howard R. Efficacy of antidepressants for depression in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2017;58(3):725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z, et al. Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA. 2014;311(7):682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leonpacher AK, Peters ME, Drye LT, Makino KM, Newell JA, Devanand DP, et al. Effects of citalopram on neuropsychiatric symptoms in Alzheimer’s dementia: evidence from the CitAD study. Am J Psychiatr. 2016;173(5):473–80.

    Article  PubMed  Google Scholar 

  93. Xiao H, Su Y, Cao X, Sun S, Liang Z. A meta-analysis of mood stabilizers for Alzheimer’s disease. Journal of Huazhong University of Science and Technology [Medical Sciences]. 2010;30(5):652–8.

    Article  CAS  Google Scholar 

  94. Forlenza OV, De-Paula VD, Diniz BS. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci. 2014;5(6):443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Padala PR, Padala KP, Lensing SY, Ramirez D, Monga V, Bopp MM, et al. Methylphenidate for apathy in community-dwelling older veterans with mild Alzheimer’s disease: a double-blind, randomized, placebo-controlled trial. Am J Psychiatr. 2017;175(2):159–68.

    Article  PubMed  Google Scholar 

  96. Rosenberg PB, Lanctôt KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. The Journal of clinical psychiatry. 2013;74(8):810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sepehry AA, Sarai M, Hsiung GY. Pharmacological therapy for apathy in Alzheimer’s disease: a systematic review and meta-analysis. Can J Neurol Sci. 2017;44(3):267–75.

    Article  PubMed  Google Scholar 

  98. Scherer RW, Drye L, Mintzer J, Lanctôt K, Rosenberg P, Herrmann N, et al. The Apathy in Dementia Methylphenidate Trial 2 (ADMET 2): study protocol for a randomized controlled trial. Trials. 2018;19(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res. 2016;62:41–54.

    Article  CAS  PubMed  Google Scholar 

  100. Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: implications of the Ca2+/cAMP intracellular signalling interaction. Eur J Pharmacol. 2016;788:255–60.

    Article  CAS  PubMed  Google Scholar 

  101. van den Berg JF, Kruithof HC, Kok RM, Verwijk E, Spaans HP. Electroconvulsive therapy for agitation and aggression in dementia: a systematic review. Am J Geriatr Psychiatry. 2018;26(4):419–34.

    Article  PubMed  Google Scholar 

  102. Teri L, Logsdon RG, Peskind E, Raskind M, Weiner MF, Tractenberg RE, et al. Treatment of agitation in AD A randomized, placebo-controlled clinical trial. Neurology. 2000;55(9):1271–8 This trial found that, contrary to its own hypothesis, behavioral management techniques were just as effective as haloperidol in managing agitation.

    Article  CAS  PubMed  Google Scholar 

  103. Teri L, Gibbons LE, McCurry SM, Logsdon RG, Buchner DM, Barlow WE, et al. Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial. JAMA. 2003;290(15):2015–22.

    Article  CAS  PubMed  Google Scholar 

  104. Kurz A, Thöne-Otto A, Cramer B, Egert S, Frölich L, Gertz HJ, et al. CORDIAL: cognitive rehabilitation and cognitive-behavioral treatment for early dementia in Alzheimer disease: a multicenter, randomized, controlled trial. Alzheimer Dis Assoc Disord. 2012;26(3):246–53.

    Article  PubMed  Google Scholar 

  105. Guetin S, Portet F, Picot MC, Pommié C, Messaoudi M, Djabelkir L, et al. Effect of music therapy on anxiety and depression in patients with Alzheimer’s type dementia: randomised, controlled study. Dement Geriatr Cogn Disord. 2009;28(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  106. Cotelli M, Manenti R, Zanetti O. Reminiscence therapy in dementia: a review. Maturitas. 2012;72(3):203–5.

    Article  PubMed  Google Scholar 

  107. Duru Aşiret G, Kapucu S. The effect of reminiscence therapy on cognition, depression, and activities of daily living for patients with Alzheimer disease. J Geriatr Psychiatry Neurol. 2016;29(1):31–7.

    Article  PubMed  Google Scholar 

  108. Kaymaz TT, Ozdemir L. Effects of aromatherapy on agitation and related caregiver burden in patients with moderate to severe dementia: a pilot study. Geriatr Nurs. 2017;38(3):231–7.

    Article  Google Scholar 

  109. Yang YP, Lee FP, Chao HC, Hsu FY, Wang JJ. Comparing the effects of cognitive stimulation, reminiscence, and aroma-massage on agitation and depressive mood in people with dementia. J Am Med Dir Assoc. 2016;17(8):719–24.

    Article  PubMed  Google Scholar 

  110. •• Kales HC, Gitlin LN, Lyketsos CG. Detroit expert panel on the assessment and management of the neuropsychiatric symptoms of dementia. Management of neuropsychiatric symptoms of dementia in clinical settings: recommendations from a multidisciplinary expert panel. J Am Geriatr Soc. 2014;62(4):762–9 This article explains the DICE approach and includes a large table with questions that can help clinicians apply the DICE approach.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The editors would like to thank Dr. Madhavi Nagalla for taking the time to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Drake.

Ethics declarations

Conflict of Interest

David Wolinsky, Karina Drake, and Jolene Bostwick each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Complex Medical-Psychiatric Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolinsky, D., Drake, K. & Bostwick, J. Diagnosis and Management of Neuropsychiatric Symptoms in Alzheimer’s Disease. Curr Psychiatry Rep 20, 117 (2018). https://doi.org/10.1007/s11920-018-0978-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-018-0978-8

Keywords

Navigation