Skip to main content
Log in

Motor System Pathology in Psychosis

  • Schizophrenia and Other Psychotic Disorders (S Siegel, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Motor abnormalities are an intrinsic feature of psychosis. Neurological soft signs, Parkinsonism, dyskinesia, and other motor phenomena are frequently observed in subjects at clinical or genetic risk for psychosis as well as first-episode patients, chronic patients. Here, we review the most recent literature on motor assessments and pathophysiology in psychosis.

Recent Findings

Instrumental measures of fine motor performance, balance, spontaneous motor activity, and gesture indicated motor abnormalities in subjects at risk and across stages of schizophrenia. Motor phenomena are associated with distinct symptom dimensions and may indicate poor outcomes. Neuroimaging studies demonstrated altered neural maturation within critical motor networks in subjects at risk. Furthermore, specific categories of motor dysfunction were associated with distinct structural and functional alterations in the motor system in schizophrenia.

Summary

Motor abnormalities provide a unique window into the pathobiology of psychosis and have the potential to guide screening, staging, and outcome prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Walther S, Strik W. Motor symptoms and schizophrenia. Neuropsychobiology. 2012;66(2):77–92.

    Article  PubMed  Google Scholar 

  2. Psychiatrie KE. Ein Lehrbuch für Studirende und Aerzte. 6th ed. Leipzig: Verlag von Johann Ambrosius Barth; 1899.

    Google Scholar 

  3. Bleuler E. Dementia praecox oder Gruppe der Schizophrenien. Wien: Franz Deuticke; 1911.

    Google Scholar 

  4. Wernicke C. Grundriss der Psychiatrie in klinischen Vorlesungen. 2nd ed. Leipzig: Thieme; 1906.

    Google Scholar 

  5. Kendler KS. Phenomenology of schizophrenia and the representativeness of modern diagnostic criteria. JAMA Psychiatry. 2016;73(10):1082–92.

    Article  PubMed  Google Scholar 

  6. Reiter PJ. Extrapyramidal motor-disturbances in dementia praecox. Acta Psychiatr Scand. 1926;1(3):287–310.

    Article  Google Scholar 

  7. Walker E, Lewine RJ. Prediction of adult-onset schizophrenia from childhood home movies of the patients. Am J Psychiatry. 1990;147(8):1052–6.

    Article  CAS  PubMed  Google Scholar 

  8. Ayd FJ Jr. A survey of drug-induced extrapyramidal reactions. JAMA. 1961;175:1054–60.

    Article  CAS  PubMed  Google Scholar 

  9. Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry. 2014;171(4):395–7.

    Article  PubMed  Google Scholar 

  10. Peralta V, Campos MS, De Jalon EG, Cuesta MJ. Motor behavior abnormalities in drug-naive patients with schizophrenia spectrum disorders. Mov Disord. 2010;25(8):1068–76.

    Article  PubMed  Google Scholar 

  11. Mittal VA, Neumann C, Saczawa M, Walker EF. Longitudinal progression of movement abnormalities in relation to psychotic symptoms in adolescents at high risk of schizophrenia. Arch Gen Psychiatry. 2008;65(2):165–71.

    Article  PubMed  Google Scholar 

  12. Koning JP, Tenback DE, van Os J, Aleman A, Kahn RS, van Harten PN. Dyskinesia and parkinsonism in antipsychotic-naive patients with schizophrenia, first-degree relatives and healthy controls: a meta-analysis. Schizophr Bull. 2010;36(4):723–31.

    Article  PubMed  Google Scholar 

  13. Neumann CS, Walker EF. Motor dysfunction in schizotypal personality disorder. Schizophr Res. 1999;38(2–3):159–68.

    Article  CAS  PubMed  Google Scholar 

  14. Lenzenweger MF, Maher BA. Psychometric schizotypy and motor performance. J Abnorm Psychol. 2002;111(4):546–55.

    Article  PubMed  Google Scholar 

  15. Mittal VA, Gupta T, Orr JM, Pelletier-Baldelli A, Dean DJ, Lunsford-Avery JR, et al. Physical activity level and medial temporal health in youth at ultra high-risk for psychosis. J Abnorm Psychol. 2013;122(4):1101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Harten PN, Walther S, Kent JS, Sponheim SR, Mittal VA. The clinical and prognostic value of motor abnormalities in psychosis and the importance of instrumental assessment. Neurosci Biobehav Rev. 2017;13(80):476-487. https://doi.org/10.1016/j.neubiorev.2017.06.007.

  17. Cortese L, Caligiuri MP, Malla AK, Manchanda R, Takhar J, Haricharan R. Relationship of neuromotor disturbances to psychosis symptoms in first-episode neuroleptic-naive schizophrenia patients. Schizophr Res. 2005;75(1):65–75.

    Article  PubMed  Google Scholar 

  18. Walther S. Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res. 2015;233(3):293–8.

    Article  PubMed  Google Scholar 

  19. Whitty PF, Owoeye O, Waddington JL. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull. 2009;35(2):415–24.

    Article  PubMed  Google Scholar 

  20. Walther S, Strik W. Catatonia. Cns Spectr. 2016;21(4):341–8.

    Article  PubMed  Google Scholar 

  21. Walther S, Mittal VA. Why we should take a closer look at gestures. Schizophr Bull. 2016;42(2):259–61.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Walther S, Stegmayer K, Sulzbacher J, Vanbellingen T, Muri R, Strik W, et al. Nonverbal social communication and gesture control in schizophrenia. Schizophr Bull. 2015;41(2):338–45. Gesture deficits are generalized impairments, also affecting nonverbal social perception. Patients performed poorly in four nonverbal tasks and impaired performance was associated with motor abnormalities.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dean DJ, Teulings HL, Caligiuri M, Mittal VA. Handwriting analysis indicates spontaneous dyskinesias in neuroleptic naive adolescents at high risk for psychosis. J Vis Exp. 2013;81:e50852.

    Google Scholar 

  24. Kubben PL, Kuijf ML, Ackermans LP, Leentjes AF, Temel Y. TREMOR12: an open-source mobile app for tremor quantification. Stereotact Funct Neurosurg. 2016;94(3):182–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Caligiuri MP, Lohr JB. Instrumental motor predictors of neuroleptic-induced parkinsonism in newly medicated schizophrenia patients. J Neuropsychiatry Clin Neurosci. 1997;9(4):562–7.

    Article  CAS  PubMed  Google Scholar 

  26. Morrens M, Hulstijn W, Matton C, Madani Y, van Bouwel L, Peuskens J, et al. Delineating psychomotor slowing from reduced processing speed in schizophrenia. Cogn Neuropsychiatry. 2008;13(6):457–71.

    Article  CAS  PubMed  Google Scholar 

  27. Dean DJ, Mittal VA. Spontaneous parkinsonisms and striatal impairment in neuroleptic free youth at ultrahigh risk for psychosis. NPJ Schizophr. 2015;1:14006. https://doi.org/10.1038/npjschz.2014.6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mentzel TQ, Lieverse R, Levens A, Mentzel CL, Tenback DE, Bakker PR, et al. Reliability and validity of an instrument for the assessment of bradykinesia. Psychiatry Res. 2016;238:189–95.

    Article  PubMed  Google Scholar 

  29. Walther S, Stegmayer K, Horn H, Razavi N, Muller TJ, Strik W. Physical activity in schizophrenia is higher in the first episode than in subsequent ones. Front Psychiatry. 2014;5:191.

    PubMed  Google Scholar 

  30. Walther S, Ramseyer F, Horn H, Strik W, Tschacher W. Less structured movement patterns predict severity of positive syndrome, excitement, and disorganization. Schizophr Bull. 2014;40(3):585–91.

    Article  PubMed  Google Scholar 

  31. •• Dean DJ, Kent JS, Bernard JA, Orr JM, Gupta T, Pelletier-Baldelli A, et al. Increased postural sway predicts negative symptom progression in youth at ultrahigh risk for psychosis. Schizophr Res. 2015;162(1–3):86–9. This study is relevant because it links balance, an instrumental assessment tapping into neurological soft signs, with clinical course in a high-risk group. Futher, balance predicts negative syptoms; these features contribute signficantly to disability and appear early in course, but currently, there are limited related biomarkers.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Matthews N, Gold BJ, Sekuler R, Park S. Gesture imitation in schizophrenia. Schizophr Bull. 2013;39(1):94–101.

    Article  PubMed  Google Scholar 

  33. Morrens M, Hulstijn W, Van Hecke J, Peuskens J, Sabbe BG. Sensorimotor and cognitive slowing in schizophrenia as measured by the Symbol Digit Substitution Test. J Psychiatr Res. 2006;40(3):200–6.

    Article  CAS  PubMed  Google Scholar 

  34. Walther S, Vanbellingen T, Muri R, Strik W, Bohlhalter S. Impaired pantomime in schizophrenia: association with frontal lobe function. Cortex. 2013;49(2):520–7.

    Article  PubMed  Google Scholar 

  35. Walther S, Horn H, Razavi N, Koschorke P, Muller TJ, Strik W. Quantitative motor activity differentiates schizophrenia subtypes. Neuropsychobiology. 2009;60(2):80–6.

    Article  PubMed  Google Scholar 

  36. Keskinen E, Marttila A, Marttila R, Jones PB, Murray GK, Moilanen K, et al. Interaction between parental psychosis and early motor development and the risk of schizophrenia in a general population birth cohort. Eur Psychiatry. 2015;30(6):719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. •• Burton BK, Thorup AAE, Jepsen JR, Poulsen G, Ellersgaard D, Spang KS, et al. Impairments of motor function among children with a familial risk of schizophrenia or bipolar disorder at 7 years old in Denmark: an observational cohort study. Lancet Psychiatry. 2017;4(5):400–8. This study demonstrates that early motor symptoms may be useful in differentiating clinical trajectories. This suggests promise for motor behaviors in a diagnostic context.

    Article  PubMed  Google Scholar 

  38. Sormunen E, Saarinen MM, Salokangas RKR, Telama R, Hutri-Kahonen N, Tammelin T, et al. Effects of childhood and adolescence physical activity patterns on psychosis risk—a general population cohort study. NPJ Schizophr. 2017;3(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. • Kindler J, Schultze-Lutter F, Michel C, Martz-Irngartinger A, Linder C, Schmidt SJ, et al. Abnormal involuntary movements are linked to psychosis-risk in children and adolescents: results of a population-based study. Schizophr Res. 2016;174(1–3):58–64. Dyskinesia may be present in children from the general population, and related to psychosis risk.

    Article  PubMed  Google Scholar 

  40. • Willems AE, Sommer IE, Tenback DE, Koning JP, van Harten PN. Instrumental measurements of spontaneous dyskinesia and schizotypy in subjects with auditory verbal hallucinations and healthy controls. Psychiatry Res. 2016;244:24–7. Study demonstrated that dyskinesia is more prevalent in subjects experiencing auditory hallucinations.

    Article  PubMed  Google Scholar 

  41. Manschreck TC, Chun J, Merrill AM, Maher BA, Boshes RA, Glatt SJ, et al. Impaired motor performance in adolescents at familial high-risk for schizophrenia. Schizophr Res. 2015;168(1–2):44–9.

    Article  CAS  PubMed  Google Scholar 

  42. Schiffman J, Walker E, Ekstrom M, Schulsinger F, Sorensen H, Mednick S. Childhood videotaped social and neuromotor precursors of schizophrenia: a prospective investigation. Am J Psychiatry. 2004;161(11):2021–7.

    Article  PubMed  Google Scholar 

  43. • Dean DJ, Orr JM, Newberry RE, Mittal VA. Motor behavior reflects reduced hemispheric asymmetry in the psychosis risk period. Schizophr Res. 2016;170(1):137–42. Psychosis risk is associated with decreased dextrality, which predicts positive symptom course over 12 months.

    Article  PubMed  Google Scholar 

  44. Millman ZB, Goss J, Schiffman J, Mejias J, Gupta T, Mittal VA. Mismatch and lexical retrieval gestures are associated with visual information processing, verbal production, and symptomatology in youth at high risk for psychosis. Schizophr Res. 2014;158(1–3):64–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Osborne KJ, Bernard JA, Gupta T, Dean DJ, Millman Z, Vargas T, et al. Beat gestures and postural control in youth at ultrahigh risk for psychosis. Schizophr Res. 2016; https://doi.org/10.1016/j.schres.2016.11.028.

  46. Callaway DA, Perkins DO, Woods SW, Liu L, Addington J. Movement abnormalities predict transitioning to psychosis in individuals at clinical high risk for psychosis. Schizophr Res. 2014;159(2–3):263–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mittal VA, Walker EF. Movement abnormalities predict conversion to Axis I psychosis among prodromal adolescents. J Abnorm Psychol. 2007;116(4):796–803.

    Article  PubMed  Google Scholar 

  48. Mittal VA, Walker EF, Bearden CE, Walder D, Trottman H, Daley M, et al. Markers of basal ganglia dysfunction and conversion to psychosis: neurocognitive deficits and dyskinesias in the prodromal period. Biol Psychiatry. 2010;68(1):93–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peralta V, Moreno-Izco L, Sanchez-Torres A, Garcia de Jalon E, Campos MS, Cuesta MJ. Characterization of the deficit syndrome in drug-naive schizophrenia patients: the role of spontaneous movement disorders and neurological soft signs. Schizophr Bull. 2014;40(1):214–24.

    Article  PubMed  Google Scholar 

  50. •• Cuesta MJ, Sanchez-Torres AM, de Jalon EG, Campos MS, Ibanez B, Moreno-Izco L, et al. Spontaneous parkinsonism is associated with cognitive impairment in antipsychotic-naive patients with first-episode psychosis: a 6-month follow-up study. Schizophr Bull. 2014;40(5):1164–73. Study demonstrates poor outcome in first-episode patients who have spontaneous parkinsonism.

    Article  PubMed  Google Scholar 

  51. Emsley R, Chiliza B, Asmal L, Kilian S, Riaan Olivier M, Phahladira L, et al. Neurological soft signs in first-episode schizophrenia: state- and trait-related relationships to psychopathology, cognition and antipsychotic medication effects. Schizophr Res. 2017; https://doi.org/10.1016/j.schres.2017.01.034.

  52. Compton MT, Fantes F, Wan CR, Johnson S, Walker EF. Abnormal movements in first-episode, nonaffective psychosis: dyskinesias, stereotypies, and catatonic-like signs. Psychiatry Res. 2015;226(1):192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Mentzel TQ, Lieverse R, Bloemen O, Viechtbauer W, van Harten PN, Genetic R, et al. High incidence and prevalence of drug-related movement disorders in young patients with psychotic disorders. J Clin Psychopharmacol. 2017;37(2):231–8. Large naturalistic study demonstrating a high prevalence of drug-induced movement disorders in early psychosis. More than 50% of cases have persistent motor abnormalities.

    Article  CAS  PubMed  Google Scholar 

  54. Stegmayer K, Moor J, Vanbellingen T, Bohlhalter S, Muri RM, Strik W, et al. Gesture performance in first- and multiple-episode patients with schizophrenia spectrum disorders. Neuropsychobiology. 2016;73(4):201–8.

    Article  PubMed  Google Scholar 

  55. Morgante F, Barbui C, Tinazzi M, Italian DIPsg. Parkinsonian axial signs in schizophrenia. Parkinsonism Relat Disord. 2017;36:89–92.

    Article  PubMed  Google Scholar 

  56. Quinn J, Meagher D, Murphy P, Kinsella A, Mullaney J, Waddington JL. Vulnerability to involuntary movements over a lifetime trajectory of schizophrenia approaches 100%, in association with executive (frontal) dysfunction. Schizophr Res. 2001;49(1–2):79–87.

    Article  CAS  PubMed  Google Scholar 

  57. Mentzel CL, Bakker PR, van Os J, Drukker M, Matroos GE, Hoek HW, et al. Effect of antipsychotic type and dose changes on tardive dyskinesia and parkinsonism severity in patients with a serious mental illness: the curacao extrapyramidal syndromes study XII. J Clin Psychiatry. 2017;78(3):e279–e85.

    Article  PubMed  Google Scholar 

  58. Walther S, Stegmayer K, Horn H, Rampa L, Razavi N, Muller TJ, et al. The longitudinal course of gross motor activity in schizophrenia—within and between episodes. Front Psychiatry. 2015;6:10.

    PubMed  PubMed Central  Google Scholar 

  59. Stubbs B, Ku PW, Chung MS, Chen LJ. Relationship between objectively measured sedentary behavior and cognitive performance in patients with schizophrenia vs controls. Schizophr Bull. 2017;43(3):566–74.

    PubMed  Google Scholar 

  60. Lavelle M, Healey PG, McCabe R. Is nonverbal communication disrupted in interactions involving patients with schizophrenia? Schizophr Bull. 2013;39(5):1150–8.

    Article  PubMed  Google Scholar 

  61. Walther S, Vanbellingen T, Muri R, Strik W, Bohlhalter S. Impaired gesture performance in schizophrenia: particular vulnerability of meaningless pantomimes. Neuropsychologia. 2013;51(13):2674–8.

    Article  PubMed  Google Scholar 

  62. •• Walther S, Eisenhardt S, Bohlhalter S, Vanbellingen T, Muri R, Strik W, et al. Gesture performance in schizophrenia predicts functional outcome after 6 months. Schizophrenia Bull. 2016;42(6):1326–33. This study demonstrates that simple motor bed-side tests may be valuable predictors of schizophrenia outcome.

    Article  Google Scholar 

  63. Pappa S, Dazzan P. Spontaneous movement disorders in antipsychotic-naive patients with first-episode psychoses: a systematic review. Psychol Med. 2009;39(7):1065–76.

    Article  CAS  PubMed  Google Scholar 

  64. Caligiuri MP, Lohr JB, Jeste DV. Parkinsonism in neuroleptic-naive schizophrenic patients. Am J Psychiatry. 1993;150(9):1343–8.

    Article  CAS  PubMed  Google Scholar 

  65. Murck H, Laughren T, Lamers F, Picard R, Walther S, Goff D, et al. Taking personalized medicine seriously: biomarker approaches in phase IIb/III studies in major depression and schizophrenia. Innov Clin Neurosci. 2015;12(3–4):26S–40S.

    PubMed  PubMed Central  Google Scholar 

  66. Fenton WS, Blyler CR, Wyatt RJ, McGlashan TH. Prevalence of spontaneous dyskinesia in schizophrenic and non-schizophrenic psychiatric patients. Br J Psychiatry. 1997;171:265–8.

    Article  CAS  PubMed  Google Scholar 

  67. Woods BT, Kinney DK, Yurgelun-Todd D. Neurologic abnormalities in schizophrenic patients and their families. I. Comparison of schizophrenic, bipolar, and substance abuse patients and normal controls. Arch Gen Psychiatry. 1986;43(7):657–63.

    Article  CAS  PubMed  Google Scholar 

  68. Owoeye O, Kingston T, Scully PJ, Baldwin P, Browne D, Kinsella A, et al. Epidemiological and clinical characterization following a first psychotic episode in major depressive disorder: comparisons with schizophrenia and bipolar I disorder in the Cavan-Monaghan First Episode Psychosis Study (CAMFEPS). Schizophr Bull. 2013;39(4):756–65.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Andreasen NC, Nopoulos P, O'Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry. 1999;46(7):908–20.

    Article  CAS  PubMed  Google Scholar 

  70. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull. 2009;35(3):549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: a dimensional step towards an underappreciated domain. Schizophr Res. 2015;169(1–3):217–33.

    Article  PubMed  Google Scholar 

  72. Bernard JA, Russell CE, Newberry RE, Goen JR, Mittal VA. Patients with schizophrenia show aberrant patterns of basal ganglia activation: evidence from ALE meta-analysis. NeuroImage Clinical. 2017;14:450–63.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry. 2012;169(10):1092–9.

    Article  PubMed  Google Scholar 

  74. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.

    Article  PubMed  Google Scholar 

  75. Kaufmann T, Skatun KC, Alnaes D, Doan NT, Duff EP, Tonnesen S, et al. Disintegration of sensorimotor brain networks in schizophrenia. Schizophr Bull. 2015;41(6):1326–35.

    Article  PubMed  PubMed Central  Google Scholar 

  76. • Martino M, Magioncalda P, Yu H, Li X, Wang Q, Meng Y, et al. Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naive patients with schizophrenia. Schizophr Bull. 2017; https://doi.org/10.1093/schbul/sbx067. In drug-naïve first-episode patients, resting-state functional connectivity is decreased between the substantia nigra and striatum as well as between the striatum and thalamus. Increased connectivity was detected between the thalamus and motor cortex, which was related to general symptom severity.

  77. • Bernard JA, Goen JRM, Maldonado T. A case for motor network contributions to schizophrenia symptoms: evidence from resting-state connectivity. Hum Brain Mapp. 2017;38:4535–45. Abnormal resting state connectivity was observed in the motor system in schizophrenia. Severity of alterations was correlated with general symptom severity.

    Article  PubMed  Google Scholar 

  78. •• Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017;43(5):982–92. First report linking abnormal functional connectivity at rest to specific motor abnormalities in schizophrenia spectrum disorders.

    Article  PubMed  Google Scholar 

  79. Heinze K, Reniers RL, Nelson B, Yung AR, Lin A, Harrison BJ, et al. Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biol Psychiatry. 2015;77(11):989–96.

    Article  PubMed  Google Scholar 

  80. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72(9):882–91.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Walther S, Federspiel A, Horn H, Razavi N, Wiest R, Dierks T, et al. Resting state cerebral blood flow and objective motor activity reveal basal ganglia dysfunction in schizophrenia. Psychiatry Res. 2011;192(2):117–24.

    Article  PubMed  Google Scholar 

  82. Bracht T, Schnell S, Federspiel A, Razavi N, Horn H, et al. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia. Schizophr Res. 2013;143(2–3):269–76. https://doi.org/10.1016/j.schres.2012.12.004.

  83. Walther S, Federspiel A, Horn H, Razavi N, Wiest R, Dierks T, et al. Alterations of white matter integrity related to motor activity in schizophrenia. Neurobiol Dis. 2011;42(3):276–83.

    Article  PubMed  Google Scholar 

  84. Docx L, Emsell L, Van Hecke W, De Bondt T, Parizel PM, Sabbe B, et al. White matter microstructure and volitional motor activity in schizophrenia: a diffusion kurtosis imaging study. Psychiatry Res. 2016;260:29–36.

    Article  PubMed  Google Scholar 

  85. Viher PV, Stegmayer K, Giezendanner S, Federspiel A, Bohlhalter S, Vanbellingen T, et al. Cerebral white matter structure is associated with DSM-5 schizophrenia symptom dimensions. NeuroImage Clinical. 2016;12:93–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stegmayer K, Horn H, Federspiel A, Razavi N, Bracht T, Laimbock K, et al. Supplementary motor area (SMA) volume is associated with psychotic aberrant motor behaviour of patients with schizophrenia. Psychiatry Res. 2014;223(1):49–51.

    Article  PubMed  Google Scholar 

  87. • Walther S, Schappi L, Federspiel A, Bohlhalter S, Wiest R, Strik W, et al. Resting-state hyperperfusion of the supplementary motor area in catatonia. Schizophr Bull. 2016;43(5):972–81. Resting-state perfusion in a group of patients with acute catatonia indicates a state of hyperactivity within SMA in subjects with severe motor inhibition.

    PubMed Central  Google Scholar 

  88. Mittal VA, Dean DJ, Bernard JA, Orr JM, Pelletier-Baldelli A, Carol EE, et al. Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull. 2014;40(6):1204–15.

    Article  PubMed  Google Scholar 

  89. •• Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage Clinical. 2017;14:622–8. This article is important because it tracks changes in motor networks over time, as a function of development and disease course, in the psychosis risk period.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bernard JA, Dean DJ, Kent JS, Orr JM, Pelletier-Baldelli A, Lunsford-Avery JR, et al. Cerebellar networks in individuals at ultra high-risk of psychosis: impact on postural sway and symptom severity. Hum Brain Mapp. 2014;35(8):4064–78.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mittal VA, Daley M, Shiode MF, Bearden CE, O'Neill J, Cannon TD. Striatal volumes and dyskinetic movements in youth at high-risk for psychosis. Schizophr Res. 2010;123(1):68–70.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mittal V, Bernard JA, Northoff G. What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull. 2017;43(5):949–55.

    Article  PubMed  Google Scholar 

  93. •• Kappenman ES, Luck SJ, Kring AM, Lesh TA, Mangun GR, Niendam T, et al. Electrophysiological evidence for impaired control of motor output in schizophrenia. Cereb Cortex. 2016;26(5):1891–9. Demonstrates that electrophysiology can also be used to significantly improve our understanding of motor dysfunction in psychosis. The broader incorporation of event-related potentionals is promising as the method lends well to instrumental motor assessments.

    Article  PubMed  Google Scholar 

  94. •• Martinelli C, Rigoli F, Shergill SS. Aberrant force processing in schizophrenia. Schizophr Bull. 2017;43(2):417–24. This study applied a very innovative approach: combining an instrumental assessment with an fMRI experiment, and results signficantly improve our understanding of pathophysiology.

    PubMed  Google Scholar 

  95. Lindberg PG, Teremetz M, Charron S, Kebir O, Saby A, Bendjemaa N, et al. Altered cortical processing of motor inhibition in schizophrenia. Cortex. 2016;85:1–12.

    Article  PubMed  Google Scholar 

  96. • Stegmayer K, Bohlhalter S, Vanbellingen T, Federspiel A, Wiest R, Muri RM, et al. Limbic interference during social action planning in schizophrenia. Schizophr Bull. 2017; https://doi.org/10.1093/schbul/sbx059. When planning hand gestures, patients have reduced neural activity in the praxis network. Instead, they demonstrate aberrant limbic activity during gesture planning.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Walther.

Ethics declarations

Conflict of Interest

Sebastian Walther reports a grant from Swiss National Science Foundation and personal fees from Ely Lilly, Janssen, and Lundbeck/Otsuka.

Vijay A. Mittal reports a grant from NIMH and a consultancy with Takeda.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Schizophrenia and Other Psychotic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walther, S., Mittal, V.A. Motor System Pathology in Psychosis. Curr Psychiatry Rep 19, 97 (2017). https://doi.org/10.1007/s11920-017-0856-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0856-9

Keywords

Navigation