Skip to main content

Advertisement

Log in

Reproductive Affective Disorders: a Review of the Genetic Evidence for Premenstrual Dysphoric Disorder and Postpartum Depression

  • Reproductive Psychiatry and Women's Health (CN Epperson, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study is to review and summarize the literature exploring the genetic basis for premenstrual dysphoric disorder (PMDD) and postpartum depression (PPD).

Recent Findings

There is more evidence for a genetic basis for PPD than for PMDD, but only when PPD is defined as beginning in the immediate postpartum time period.

Summary

Familial, genome-wide linkage and association studies, and candidate gene studies, most in the past 10 years, have examined the genetic etiology of reproductive affective disorders, including PMDD and PPD. The most commonly studied genes include SERT, COMT, MAOA, BDNF, and ESR1 and 2. This qualitative review of the recent literature finds limited evidence so far for the genetic basis for PMDD, with both familial and candidate gene studies having negative or conflicting results. Evidence is stronger for the genetic basis for PPD, with positive associations found in family studies and in several genes associated with major depression as well as genes involved in estrogen signaling but only when PPD onset is shortly after delivery. Epigenetic biomarkers on genes responsive to estrogen have also been found to predict PPD. Our findings underscore the need for additional studies with larger samples, as well as the crucial importance of timing in the definition of PPD for genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Levinson DF, Mostafavi S, Milaneschi Y, Rivera M, Ripke S, Wray NR, et al. Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? Biol Psychiatry. 2014;76(7):510–2. https://doi.org/10.1016/j.biopsych.2014.07.029.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Payne JL, Palmer JT, Joffe H. A reproductive subtype of depression: conceptualizing models and moving toward etiology. Harv Rev Psychiatry. 2009;17(2):72–86. https://doi.org/10.1080/10673220902899706.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cyranowski JM, Frank E, Young E, Shear MK. Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch Gen Psychiatry. 2000;57(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Washington DC 2013.

  5. Yonkers KA, Simoni MK. Premenstrual disorders. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2017.05.045.

  6. Diraimondo F, Bolognesi M, Brenci G, Vignetti G. Genetic exploration of the premenstrual syndrome through the clinical twin method. Il Policlinico Sezionen. 1964;71:271–90.

    CAS  Google Scholar 

  7. Heslington KDK. The incidence of premenstrual syndrome in the adoptive daughter. Br J Fam Plann. 1994;19:23–4.

    Google Scholar 

  8. Kantero RL, Widholm O. Correlations of menstrual traits between adolescent girls and their mothers. Acta Obs Gynaecol Scand (Suppl). 1971;14:30–6.

    Article  Google Scholar 

  9. Glick H, Endicott J, Nee J. Premenstrual changes: are they familial? Acta Psychiatr Scand. 1993;88(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  10. Payne JL, Klein SR, Zamoiski RB, Zandi PP, Bienvenu OJ, Mackinnon DF, et al. Premenstrual mood symptoms: study of familiality and personality correlates in mood disorder pedigrees. Arch Women’s Ment Health. 2009;12(1):27–34. https://doi.org/10.1007/s00737-008-0043-4.

    Article  Google Scholar 

  11. Kendler KS, Silberg JL, Neale MC, Kessler RC, Heath AC, Eaves LJ. Genetic and environmental factors in the aetiology of menstrual, premenstrual and neurotic symptoms: a population-based twin study. Psychol Med. 1992;22(1):85–100.

    Article  CAS  PubMed  Google Scholar 

  12. Kendler KS, Karkowski LM, Corey LA, Neale MC. Longitudinal population-based twin study of retrospectively reported premenstrual symptoms and lifetime major depression. Am J Psychiatry. 1998;155(9):1234–40. https://doi.org/10.1176/ajp.155.9.1234.

    Article  CAS  PubMed  Google Scholar 

  13. van den Akker OB, Stein GS, Neale MC, Murray RM. Genetic and environmental variation in menstrual cycle: histories of two British twin samples. Acta Genet Med Gemellol. 1987;36(4):541–8.

    Article  PubMed  Google Scholar 

  14. Dalton K, Dalton ME, Guthrie K. Incidence of the premenstrual syndrome in twins. Br Med J (Clin Res Ed). 1987;295(6605):1027–8.

    Article  CAS  Google Scholar 

  15. Condon JT. The premenstrual syndrome: a twin study. Br J Psychiatry. 1993;162:481–6.

    Article  CAS  PubMed  Google Scholar 

  16. Jahanfar S, Lye MS, Krishnarajah IS. The heritability of premenstrual syndrome. Twin Res Hum Genet. 2011;14(5):433–6. https://doi.org/10.1375/twin.14.5.433.

    Article  PubMed  Google Scholar 

  17. Treloar SA, Heath AC, Martin NG. Genetic and environmental influences on premenstrual symptoms in an Australian twin sample. Psychol Med. 2002;32(1):25–38.

    Article  CAS  PubMed  Google Scholar 

  18. van den Akker OB, Eves FF, Stein GS, Murray RM. Genetic and environmental factors in premenstrual symptom reporting and its relationship to depression and a general neuroticism trait. J Psychosom Res. 1995;39(4):477–87.

    Article  PubMed  Google Scholar 

  19. Treloar SA, Martin NG, Bucholz KK, Madden PA, Heath AC. Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. Psychol Med. 1999;29(3):645–54.

    Article  CAS  PubMed  Google Scholar 

  20. Murphy-Eberenz K, Zandi PP, March D, Crowe RR, Scheftner WA, Alexander M, et al. Is perinatal depression familial? J Affect Disord. 2006;90(1):49–55. https://doi.org/10.1016/j.jad.2005.10.006.

    Article  PubMed  Google Scholar 

  21. Forty L, Jones L, Macgregor S, Caesar S, Cooper C, Hough A, et al. Familiality of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry. 2006;163(9):1549–53. https://doi.org/10.1176/ajp.2006.163.9.1549.

    Article  PubMed  Google Scholar 

  22. Payne JL, MacKinnon DF, Mondimore FM, McInnis MG, Schweizer B, Zamoiski RB, et al. Familial aggregation of postpartum mood symptoms in bipolar disorder pedigrees. Bipolar Disord. 2008;10(1):38–44. https://doi.org/10.1111/j.1399-5618.2008.00455.x.

    Article  PubMed  Google Scholar 

  23. Mahon PB, Payne JL, MacKinnon DF, Mondimore FM, Goes FS, Schweizer B, et al. Genome-wide linkage and follow-up association study of postpartum mood symptoms. Am J Psychiatry. 2009;166(11):1229–37. https://doi.org/10.1176/appi.ajp.2009.09030417.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Green AD, Galea LA. Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy. Horm Behav. 2008;54(1):203–11. https://doi.org/10.1016/j.yhbeh.2008.02.023.

    Article  CAS  PubMed  Google Scholar 

  25. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38(11):1289–97. https://doi.org/10.1038/ng1901.

    Article  CAS  PubMed  Google Scholar 

  26. • Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med. 2014;44(11):2309–22. https://doi.org/10.1017/s0033291713003231. Genome-wide association gene expression study during pregnancy that was predictive of PPD in women euthymic during pregnancy .

    Article  CAS  PubMed  Google Scholar 

  27. Damberg M, Westberg L, Berggard C, Landen M, Sundblad C, Eriksson O, et al. Investigation of transcription factor AP-2 beta genotype in women with premenstrual dysphoric disorder. Neurosci Lett. 2005;377(1):49–52. https://doi.org/10.1016/j.neulet.2004.11.068.

    Article  CAS  PubMed  Google Scholar 

  28. Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Hum Brain Mapp. 2014;35(9):4450–8. https://doi.org/10.1002/hbm.22486.

    Article  PubMed  Google Scholar 

  29. Huo L, Straub RE, Roca C, Schmidt PJ, Shi K, Vakkalanka R, et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry. 2007;62(8):925–33. https://doi.org/10.1016/j.biopsych.2006.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deveci EO, Incebiyik A, Selek S, Camuzcuoglu A, Hilali NG, Camuzcuoglu H, et al. Is catechol-o-methyltransferase gene polymorphism a risk factor in the development of premenstrual syndrome? Clin Exp Reprod Med. 2014;41(2):62–7. https://doi.org/10.5653/cerm.2014.41.2.62.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yildiz M, Vural M, Erdal ME, Izci Ay O, Yilmaz SG, Karababa IF, et al. Lack of association of DRD3 and CNR1 polymorphisms with premenstrual dysphoric disorders. Iran J Reprod Med. 2015;13(4):221–6.

    PubMed  PubMed Central  Google Scholar 

  32. Miller A, Vo H, Huo L, Roca C, Schmidt PJ, Rubinow DR. Estrogen receptor alpha (ESR-1) associations with psychological traits in women with PMDD and controls. J Psychiatr Res. 2010;44(12):788–94. https://doi.org/10.1016/j.jpsychires.2010.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takeo C, Negishi E, Nakajima A, Ueno K, Tatsuno I, Saito Y, et al. Association of cytosine-adenine repeat polymorphism of the estrogen receptor-beta gene with menopausal symptoms. Gend Med. 2005;2(2):96–105.

    Article  PubMed  Google Scholar 

  34. Melke J, Westberg L, Landen M, Sundblad C, Eriksson O, Baghei F, et al. Serotonin transporter gene polymorphisms and platelet [3H] paroxetine binding in premenstrual dysphoria. Psychoneuroendocrinology. 2003;28(3):446–58.

    Article  CAS  PubMed  Google Scholar 

  35. Praschak-Rieder N, Willeit M, Winkler D, Neumeister A, Hilger E, Zill P, et al. Role of family history and 5-HTTLPR polymorphism in female seasonal affective disorder patients with and without premenstrual dysphoric disorder. Eur Neuropsychopharmacol. 2002;12(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  36. Gingnell M, Comasco E, Oreland L, Fredrikson M, Sundstrom-Poromaa I. Neuroticism-related personality traits are related to symptom severity in patients with premenstrual dysphoric disorder and to the serotonin transporter gene-linked polymorphism 5-HTTPLPR. Arch Women’s Ment Health. 2010;13(5):417–23. https://doi.org/10.1007/s00737-010-0164-4.

    Article  Google Scholar 

  37. Magnay JL, El-Shourbagy M, Fryer AA, O'Brien S, Ismail KM. Analysis of the serotonin transporter promoter rs25531 polymorphism in premenstrual dysphoric disorder. Am J Obstet Gynecol. 2010;203(2):181.e1–5. https://doi.org/10.1016/j.ajog.2010.02.043.

    Article  Google Scholar 

  38. Dhingra V, Magnay JL, O'Brien PM, Chapman G, Fryer AA, Ismail KM. Serotonin receptor 1A C(-1019)G polymorphism associated with premenstrual dysphoric disorder. Obstet Gynecol. 2007;110(4):788–92. https://doi.org/10.1097/01.AOG.0000284448.73490.ac.

    Article  CAS  PubMed  Google Scholar 

  39. Yen JY, Tu HP, Chen CS, Yen CF, Long CY, Ko CH. The effect of serotonin 1A receptor polymorphism on the cognitive function of premenstrual dysphoric disorder. Eur Arch Psychiatry Clin Neurosci. 2014;264(8):729–39. https://doi.org/10.1007/s00406-013-0466-4.

    Article  PubMed  Google Scholar 

  40. Figueira P, Malloy-Diniz L, Campos SB, Miranda DM, Romano-Silva MA, De Marco L, et al. An association study between the Val66Met polymorphism of the BDNF gene and postpartum depression. Arch Women’s Ment Health. 2010;13(3):285–9. https://doi.org/10.1007/s00737-010-0146-6.

    Article  Google Scholar 

  41. Comasco E, Sylven SM, Papadopoulos FC, Oreland L, Sundstrom-Poromaa I, Skalkidou A. Postpartum depressive symptoms and the BDNF Val66Met functional polymorphism: effect of season of delivery. Arch Women’s Ment Health. 2011;14(6):453–63. https://doi.org/10.1007/s00737-011-0239-x.

    Article  Google Scholar 

  42. Doornbos B, Dijck-Brouwer DA, Kema IP, Tanke MA, van Goor SA, Muskiet FA, et al. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(7):1250–4. https://doi.org/10.1016/j.pnpbp.2009.07.013.

    Article  CAS  Google Scholar 

  43. Alvim-Soares A, Miranda D, Campos SB, Figueira P, Romano-Silva MA, Correa H. Postpartum depression symptoms associated with Val158Met COMT polymorphism. Arch Women’s Ment Health. 2013;16(4):339–40. https://doi.org/10.1007/s00737-013-0349-8.

    Article  CAS  Google Scholar 

  44. Engineer N, Darwin L, Nishigandh D, Ngianga-Bakwin K, Smith SC, Grammatopoulos DK. Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum. J Psychiatr Res. 2013;47(9):1166–73. https://doi.org/10.1016/j.jpsychires.2013.05.003.

    Article  PubMed  Google Scholar 

  45. Schneider M, Engel A, Fasching PA, Haberle L, Binder EB, Voigt F, et al. Genetic variants in the genes of the stress hormone signalling pathway and depressive symptoms during and after pregnancy. Biomed Res Int. 2014;2014:469278. https://doi.org/10.1155/2014/469278.

    PubMed  PubMed Central  Google Scholar 

  46. Stergiakouli E, Sterne JA, Smith GD. Failure to replicate the association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants with risk of depression during pregnancy and post-partum reported by. J Psychiatr Res. 2014;56:168–70. https://doi.org/10.1016/j.jpsychires.2014.04.016.

    Article  PubMed  Google Scholar 

  47. Tan EC, Chua TE, Lee TM, Tan HS, Ting JL, Chen HY. Case-control study of glucocorticoid receptor and corticotrophin-releasing hormone receptor gene variants and risk of perinatal depression. BMC Pregnancy Childbirth. 2015;15:283. https://doi.org/10.1186/s12884-015-0720-z.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Josefsson A, Sydsjo G, Berg G, Dahl ML, Wadelius M, Nordin C. CYP2D6 genotypes and depressive symptoms during late pregnancy and postpartum. Nord J Psychiatry. 2004;58(1):61–4. https://doi.org/10.1080/08039480310000815.

    Article  PubMed  Google Scholar 

  49. Ivorra JL, Sanjuan J, Jover M, Carot JM, Frutos R, Molto MD. Gene-environment interaction of child temperament. J Dev Behav Pediatr: JDBP. 2010;31(7):545–54. https://doi.org/10.1097/DBP.0b013e3181ee4072.

    PubMed  Google Scholar 

  50. Costas J, Gratacos M, Escaramis G, Martin-Santos R, de Diego Y, Baca-Garcia E, et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J Psychiatr Res. 2010;44(11):717–24. https://doi.org/10.1016/j.jpsychires.2009.12.012.

    Article  PubMed  Google Scholar 

  51. Pinsonneault JK, Sullivan D, Sadee W, Soares CN, Hampson E, Steiner M. Association study of the estrogen receptor gene ESR1 with postpartum depression—a pilot study. Arch Women’s Ment Health. 2013;16(6):499–509. https://doi.org/10.1007/s00737-013-0373-8.

    Article  Google Scholar 

  52. Xie L, Innis SM. Association of fatty acid desaturase gene polymorphisms with blood lipid essential fatty acids and perinatal depression among Canadian women: a pilot study. J Nutrigenet Nutrigenomics. 2009;2(4–5):243–50. https://doi.org/10.1159/000255636.

    Article  CAS  PubMed  Google Scholar 

  53. • Alvim-Soares AM, Miranda DM, Campos SB, Figueira P, Correa H, Romano-Silva MA. HMNC1 gene polymorphism associated with postpartum depression. Rev Bras Psiquiatr (Sao Paulo, Brazil : 1999). 2014;36(1):96–7. https://doi.org/10.1590/1516-4446-2013-3507. Validates an association between HMNC1 and PPD. HMNC1 was previously identified by a genome-wide linkage and association study.

    Article  Google Scholar 

  54. Iliadis SI, Comasco E, Hellgren C, Kollia N, Sundstrom Poromaa I, Skalkidou A. Associations between a polymorphism in the hydroxysteroid (11-beta) dehydrogenase 1 gene, neuroticism and postpartum depression. J Affect Disord. 2017;207:141–7. https://doi.org/10.1016/j.jad.2016.09.030.

    Article  CAS  PubMed  Google Scholar 

  55. Lewis SJ, Araya R, Leary S, Smith GD, Ness A. Folic acid supplementation during pregnancy may protect against depression 21 months after pregnancy, an effect modified by MTHFR C677T genotype. Eur J Clin Nutr. 2012;66(1):97–103. https://doi.org/10.1038/ejcn.2011.136.

    Article  CAS  PubMed  Google Scholar 

  56. Jonas W, Mileva-Seitz V, Girard AW, Bisceglia R, Kennedy JL, Sokolowski M, et al. Genetic variation in oxytocin rs2740210 and early adversity associated with postpartum depression and breastfeeding duration. Genes Brain Behav. 2013;12(7):681–94. https://doi.org/10.1111/gbb.12069.

    CAS  PubMed  Google Scholar 

  57. Mileva-Seitz V, Steiner M, Atkinson L, Meaney MJ, Levitan R, Kennedy JL, et al. Interaction between oxytocin genotypes and early experience predicts quality of mothering and postpartum mood. PLoS One. 2013;8(4):e61443. https://doi.org/10.1371/journal.pone.0061443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bell AF, Carter CS, Steer CD, Golding J, Davis JM, Steffen AD, et al. Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy. Front Genet. 2015;6:243. https://doi.org/10.3389/fgene.2015.00243.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sanjuan J, Martin-Santos R, Garcia-Esteve L, Carot JM, Guillamat R, Gutierrez-Zotes A, et al. Mood changes after delivery: role of the serotonin transporter gene. Br J Psychiatry. 2008;193(5):383–8. https://doi.org/10.1192/bjp.bp.107.045427.

    Article  CAS  PubMed  Google Scholar 

  60. Binder EB, Newport DJ, Zach EB, Smith AK, Deveau TC, Altshuler LL, et al. A serotonin transporter gene polymorphism predicts peripartum depressive symptoms in an at-risk psychiatric cohort. J Psychiatr Res. 2010;44(10):640–6. https://doi.org/10.1016/j.jpsychires.2009.12.001.

    Article  PubMed  Google Scholar 

  61. Mitchell C, Notterman D, Brooks-Gunn J, Hobcraft J, Garfinkel I, Jaeger K, et al. Role of mother's genes and environment in postpartum depression. Proc Natl Acad Sci U S A. 2011;108(20):8189–93. https://doi.org/10.1073/pnas.1014129108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gelabert E, Subira S, Garcia-Esteve L, Navarro P, Plaza A, Cuyas E, et al. Perfectionism dimensions in major postpartum depression. J Affect Disord. 2012;136(1–2):17–25. https://doi.org/10.1016/j.jad.2011.08.030.

    Article  PubMed  Google Scholar 

  63. Khabour O, Amarneh B, Bani Hani E, Lataifeh I. Associations between variations in TPH1 , TPH2 and SLC6A4 genes and postpartum depression: a study in the Jordanian population. Balkan J Med Genet: BJMG. 2013;16(1):41–8. https://doi.org/10.2478/bjmg-2013-0016.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pinheiro RT, Coelho FM, Silva RA, Pinheiro KA, Oses JP, Quevedo Lde A, et al. Association of a serotonin transporter gene polymorphism (5-HTTLPR) and stressful life events with postpartum depressive symptoms: a population-based study. J Psychosom Obstet Gynaecol. 2013;34(1):29–33. https://doi.org/10.3109/0167482x.2012.759555.

    Article  PubMed  Google Scholar 

  65. Zhang X, Wang L, Huang F, Li J, Xiong L, Xue H, et al. Gene-environment interaction in postpartum depression: a Chinese clinical study. J Affect Disord. 2014;165:208–12. https://doi.org/10.1016/j.jad.2014.04.049.

    Article  PubMed  Google Scholar 

  66. Zhang X, Wang L, Huang F, Li J, Xiong L, Xue H, et al. Evaluation of the promoter region polymorphism (5-HTTLPR) in the serotonin transporter gene in females with postpartum depression. Exp Ther Med. 2015;9(1):245–9. https://doi.org/10.3892/etm.2014.2043.

    CAS  PubMed  Google Scholar 

  67. Fasching PA, Faschingbauer F, Goecke TW, Engel A, Haberle L, Seifert A, et al. Genetic variants in the tryptophan hydroxylase 2 gene (TPH2) and depression during and after pregnancy. J Psychiatr Res. 2012;46(9):1109–17. https://doi.org/10.1016/j.jpsychires.2012.05.011.

    Article  PubMed  Google Scholar 

  68. Klein M, Schmoeger M, Kasper S, Schosser A. Meta-analysis of the COMT Val158Met polymorphism in major depressive disorder: the role of gender. World J Biol Psychiatry. 2016;17(2):147–58. https://doi.org/10.3109/15622975.2015.1083615.

    Article  PubMed  Google Scholar 

  69. Comasco E, Sylven SM, Papadopoulos FC, Sundstrom-Poromaa I, Oreland L, Skalkidou A. Postpartum depression symptoms: a case-control study on monoaminergic functional polymorphisms and environmental stressors. Psychiatr Genet. 2011;21(1):19–28. https://doi.org/10.1097/YPG.0b013e328341a3c1.

    Article  PubMed  Google Scholar 

  70. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  71. Lang UE, Hellweg R, Gallinat J. BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology. 2004;29(4):795–8. https://doi.org/10.1038/sj.npp.1300382.

    Article  CAS  PubMed  Google Scholar 

  72. Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS, et al. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry. 2012;72(6):499–504. https://doi.org/10.1016/j.biopsych.2012.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmidt PJ, Nieman LK, Danaceau MA, Adams LF, Rubinow DR. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N Engl J Med. 1998;338(4):209–16. https://doi.org/10.1056/nejm199801223380401.

    Article  CAS  PubMed  Google Scholar 

  74. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000;157(6):924–30. https://doi.org/10.1176/appi.ajp.157.6.924.

    Article  CAS  PubMed  Google Scholar 

  75. Westberg L, Eriksson E. Sex steroid-related candidate genes in psychiatric disorders. J Psychiatry Neurosci: JPN. 2008;33(4):319–30.

    PubMed  PubMed Central  Google Scholar 

  76. Carter CS. Oxytocin pathways and the evolution of human behavior. Annu Rev Psychol. 2014;65:17–39. https://doi.org/10.1146/annurev-psych-010213-115110.

    Article  PubMed  Google Scholar 

  77. Feldman R. Oxytocin and social affiliation in humans. Horm Behav. 2012;61(3):380–91. https://doi.org/10.1016/j.yhbeh.2012.01.008.

    Article  CAS  PubMed  Google Scholar 

  78. Skrundz M, Bolten M, Nast I, Hellhammer DH, Meinlschmidt G. Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology. 2011;36(9):1886–93. https://doi.org/10.1038/npp.2011.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stuebe AM, Grewen K, Meltzer-Brody S. Association between maternal mood and oxytocin response to breastfeeding. J Women's Health (Larchmt). 2013;22(4):352–61. https://doi.org/10.1089/jwh.2012.3768.

    Article  Google Scholar 

  80. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63(11):1209–16. https://doi.org/10.1001/archpsyc.63.11.1209.

    Article  CAS  PubMed  Google Scholar 

  81. Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna, Austria : 1996). 2017; https://doi.org/10.1007/s00702-017-1709-8.

  82. • Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. 2014;19(5):560–7. https://doi.org/10.1038/mp.2013.62. Identifies two epigenetic biomarkers predictive of PPD during pregnancy.

    Article  CAS  PubMed  Google Scholar 

  83. • Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, et al. Replication of epigenetic postpartum depression biomarkers and variation with hormone levels. Neuropsychopharmacology. 2015; https://doi.org/10.1038/npp.2015.333. Validates two epigenetic biomarkers predictive of PPD during pregnancy.

  84. Cao S, Iyer JK, Lin V. Identification of tetratricopeptide repeat domain 9, a hormonally regulated protein. Biochem Biophys Res Commun. 2006;345(1):310–7. https://doi.org/10.1016/j.bbrc.2006.04.091.

    Article  CAS  PubMed  Google Scholar 

  85. Nassa G, Tarallo R, Ambrosino C, Bamundo A, Ferraro L, Paris O, et al. A large set of estrogen receptor beta-interacting proteins identified by tandem affinity purification in hormone-responsive human breast cancer cell nuclei. Proteomics. 2011;11(1):159–65. https://doi.org/10.1002/pmic.201000344.

    Article  CAS  PubMed  Google Scholar 

  86. • Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, et al. HP1BP3 expression determines maternal behavior and offspring survival. Genes Brain Behav. 2016;15(7):678–88. https://doi.org/10.1111/gbb.12312. Links HP1BP3 (previously identified epigenetic biomarker of PPD) to maternal behavior in rodents.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Payne.

Ethics declarations

Conflict of Interest

Katherine McEvoy, Lauren M. Osborne, and Julie Nanavati each declare no potential conflicts of interest.

Jennifer L. Payne holds a patent for the epigenetic biomarkers of postpartum depression. Dr. Payne reports a grant from SAGE Therapeutics and personal fees from Astra Zeneca, Eli Lilly, Johnson & Johnson, and Abbott Pharmaceuticals; and reports serving on the Relapse Adjudication Committee for Janssen Research & Development, LLC.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Reproductive Psychiatry and Women’s Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEvoy, K., Osborne, L.M., Nanavati, J. et al. Reproductive Affective Disorders: a Review of the Genetic Evidence for Premenstrual Dysphoric Disorder and Postpartum Depression. Curr Psychiatry Rep 19, 94 (2017). https://doi.org/10.1007/s11920-017-0852-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0852-0

Keywords

Navigation