Genomic Disorders in Psychiatry—What Does the Clinician Need to Know?

Abstract

Purpose of Review

The purpose of this review is to summarize the role of genomic disorders in various psychiatric conditions and to highlight important recent advances in the field that are of potential clinical relevance.

Recent Findings

Genomic disorders are caused by large rare recurrent deletions and duplications at certain chromosomal “hotspots” (e.g., 22q11.2, 16p11.2, 15q11-q13, 1q21.1, 15q13.3) across the genome. Most overlap multiple genes, affect development, and are associated with variable cognitive and other neuropsychiatric expression. Although individually rare, genomic disorders collectively account for a significant minority of intellectual disability, autism spectrum disorder, and schizophrenia.

Summary

Genome-wide chromosomal microarray analysis is capable of detecting all genomic disorders in a single test, offering the first opportunity for routine clinical genetic testing in psychiatric practice.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    • Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46(10):1063–71. https://doi.org/10.1038/ng.3092. This is the largest CNV study in DD published to date. The results of this study provided an updated CNV morbidity map for DD, which identified 70 CNV regions that were significantly associated with DD

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    • Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87(6):1215–33. https://doi.org/10.1016/j.neuron.2015.09.016. By combining chromosomal microarray and whole exome sequencing, the authors of this study identified 71 loci significantly associated with ASD, the most common of which included well-known genomic disorders (i.e., 1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-q13.1, and 22q11.2)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94(5):677–94. https://doi.org/10.1016/j.ajhg.2014.03.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    • CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consoritum. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):27–35. https://doi.org/10.1038/ng.3725. This is the largest CNV study in schizophrenia published to date. The results of this study identified eight loci (1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2, and 22q11.2) that met genome-wide significance

    Google Scholar 

  5. 5.

    • Costain G, Lionel A, Merico D, Forsythe P, Russell K, Lowther C, et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays. Hum Mol Genet. 2013;22(22):4485–501. https://doi.org/10.1093/hmg/ddt297. This is the first study to assess the diagnostic yield of chromosomal microarray in schizophrenia. The results of this study suggested that ~ 5.0% of schizophrenia cases may have a pathogenic CNV detected by clinical microarray

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Rees E, Walters JT, Georgieva L, Isles AR, Chambert KD, Richards AL, et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry. 2014;204(2):108–14. https://doi.org/10.1192/bjp.bp.113.131052.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lupski JR. Genomic disorders ten years on. Genome Med. 2009;1(4):42.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bassett AS, Costain G, Marshall CR. Neuropsychiatric aspects of 22q11.2 deletion syndrome: considerations in the prenatal setting. Prenat Diagn. 2017;37(1):61–9. https://doi.org/10.1002/pd.4935.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA. 2015;314(9):895–903. https://doi.org/10.1001/jama.2015.10078.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, et al. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry. 2017;22(3):430–40. https://doi.org/10.1038/mp.2016.88.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Fung WL, Butcher NJ, Costain G, Andrade DM, Boot E, Chow EW, et al. Practical guidelines for managing adults with 22q11.2 deletion syndrome. Genet Med. 2015;17:599–609. https://doi.org/10.1038/gim.2014.175.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Costain G, Bassett AS. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. Appl Clin Genet. 2012;5:1–18. https://doi.org/10.2147/TACG.S21953.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Van L, Boot E, Bassett AS. Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia. Curr Opin Psychiatry. 2017;30(3):191–6. https://doi.org/10.1097/YCO.0000000000000324.

    Article  PubMed  Google Scholar 

  14. 14.

    Baker K, Costain G, WLA F, Bassett AS. Chromosomal microarray analysis—a routine clinical genetic test for patients with schizophrenia. Lancet Psychiatry. 2014;1:329–31. https://doi.org/10.1016/S2215-0366(14)70308-6.

    Article  PubMed  Google Scholar 

  15. 15.

    Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet. 2006;38(9):1038–42.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88. https://doi.org/10.1016/j.ajhg.2007.12.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Christiansen J, Dyck JD, Elyas BG, Lilley M, Bamforth JS, Hicks M, et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res. 2004;94(11):1429–35.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85–97. https://doi.org/10.1038/nrg1767.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Carvalho CM, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet. 2016;17(4):224–38. https://doi.org/10.1038/nrg.2015.25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Power RA, Kyaga S, Uher R, MacCabe JH, Langstrom N, Landen M, et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry. 2013;70(1):22–30. https://doi.org/10.1001/jamapsychiatry.2013.268.

    Article  PubMed  Google Scholar 

  22. 22.

    Wou K, Levy B, Wapner RJ. Chromosomal microarrays for the prenatal detection of microdeletions and microduplications. Clin Lab Med. 2016;36(2):261–76. https://doi.org/10.1016/j.cll.2016.01.017.

    Article  PubMed  Google Scholar 

  23. 23.

    Isles AR, Ingason A, Lowther C, Walters J, Gawlick M, Stober G, et al. Parental origin of interstitial duplications at 15q11.2-q13.3 in schizophrenia and neurodevelopmental disorders. PLoS Genet. 2016;(5):12, e1005993. https://doi.org/10.1371/journal.pgen.1005993.

  24. 24.

    • Männik K, Magi R, Mace A, Cole B, Guyatt AL, Shihab HA, et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA. 2015;313(20):2044–54. https://doi.org/10.1001/jama.2015.4845. The aim of this study was to investigate the clinical features conferred by CNVs associated with genomic disorders in individuals without clinical preselection. Additional phenotyping of these individuals revealed that they had significantly lower educational attainment than the rest of the population ascertained sample and had many of the same features as individuals with the same genomic disorder who were ascertained from a clinical population

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rees E, Kendall K, Pardinas AF, Legge SE, Pocklington A, Escott-Price V, et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry. 2016;73(9):963–9. https://doi.org/10.1001/jamapsychiatry.2016.1831.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505(7483):361–6. https://doi.org/10.1038/nature12818.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125(4):e727–35. https://doi.org/10.1542/peds.2009-1684.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lowther C, Speevak M, Armour CM, Goh ES, Graham GE, Li C, et al. Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genet Med. 2017;19(1):53–61. https://doi.org/10.1038/gim.2016.54.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Chaudhry A, Noor A, Degagne B, Baker K, Bok LA, Brady AF, et al. Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder. Clin Genet. 2015;88(3):224–33. https://doi.org/10.1111/cge.12482.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Talkowski ME, Mullegama SV, Rosenfeld JA, van Bon BW, Shen Y, Repnikova EA, et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet. 2011;89(4):551–63. https://doi.org/10.1016/j.ajhg.2011.09.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol. 2017;13(1):37–51. https://doi.org/10.1038/nrneurol.2016.186.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hagerman RJ, Des-Portes V, Gasparini F, Jacquemont S, Gomez-Mancilla B. Translating molecular advances in fragile X syndrome into therapy: a review. J Clin Psychiatry. 2014;75(4):e294–307. https://doi.org/10.4088/JCP.13r08714.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Chen YH, Lu RB, Hung H, Kuo PH. Identifying potential regions of copy number variation for bipolar disorder. Microarrays. 2014;3(1):52–71. https://doi.org/10.3390/microarrays3010052.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Georgieva L, Rees E, Moran JL, Chambert KD, Milanova V, Craddock N, et al. De novo CNVs in bipolar affective disorder and schizophrenia. Hum Mol Genet. 2014;23(24):6677–83. https://doi.org/10.1093/hmg/ddu379.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Noor A, Lionel AC, Cohen-Woods S, Moghimi N, Rucker J, Fennell A, et al. Copy number variant study of bipolar disorder in Canadian and UK populations implicates synaptic genes. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(4):303–13. https://doi.org/10.1002/ajmg.b.32232.

    Article  PubMed  Google Scholar 

  36. 36.

    Green EK, Rees E, Walters JT, Smith KG, Forty L, Grozeva D, et al. Copy number variation in bipolar disorder. Mol Psychiatry. 2016;21(1):89–93. https://doi.org/10.1038/mp.2014.174.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry. 2010;15(6):637–46. https://doi.org/10.1038/mp.2009.57.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Williams NM, Zaharieva I, Martin A, Langley K, Mantripragada K, Fossdal R, et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet. 2010;376(9750):1401–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lionel AC, Crosbie J, Barbosa N, Goodale T, Thiruvahindrapuram B, Rickaby J, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med. 2011;3(95):95ra75. https://doi.org/10.1126/scitranslmed.3002464.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Ramos-Quiroga JA, Sanchez-Mora C, Casas M, Garcia-Martinez I, Bosch R, Nogueira M, et al. Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder. J Psychiatry Res. 2014;49:60–7. https://doi.org/10.1016/j.jpsychires.2013.10.022.

    Article  Google Scholar 

  41. 41.

    Jarick I, Volckmar AL, Putter C, Pechlivanis S, Nguyen TT, Dauvermann MR, et al. Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder. Mol Psychiatry. 2014;19(1):115–21. https://doi.org/10.1038/mp.2012.161.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Gazzellone MJ, Zarrei M, Burton CL, Walker S, Uddin M, Shaheen SM, et al. Uncovering obsessive-compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of copy number variation. J Neurodev Disord. 2016;8:36. https://doi.org/10.1186/s11689-016-9170-9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    McGrath LM, Yu D, Marshall C, Davis LK, Thiruvahindrapuram B, Li B, et al. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. J Am Acad Child Adolesc Psychiatry. 2014;53(8):910–9. https://doi.org/10.1016/j.jaac.2014.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Nag A, Bochukova EG, Kremeyer B, Campbell DD, Muller H, Valencia-Duarte AV, et al. CNV analysis in Tourette syndrome implicates large genomic rearrangements in COL8A1 and NRXN1. PLoS One. 2013;8(3):e59061. https://doi.org/10.1371/journal.pone.0059061.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Fernandez TV, Sanders SJ, Yurkiewicz IR, Ercan-Sencicek AG, Kim YS, Fishman DO, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biol Psychiatry. 2012;71(5):392–402. https://doi.org/10.1016/j.biopsych.2011.09.034.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Sundaram SK, Huq AM, Wilson BJ, Chugani HT. Tourette syndrome is associated with recurrent exonic copy number variants. Neurology. 2010;74(20):1583–90. https://doi.org/10.1212/WNL.0b013e3181e0f147.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yilmaz Z, Szatkiewicz JP, Crowley JJ, Ancalade N, Brandys MK, van Elburg A, et al. Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa. Psychiatr Genet. 2017; https://doi.org/10.1097/YPG.0000000000000172.

  48. 48.

    Rucker JJ, Tansey KE, Rivera M, Pinto D, Cohen-Woods S, Uher R, et al. Phenotypic association analyses with copy number variation in recurrent depressive disorder. Biol Psychiatry. 2016;79(4):329–36. https://doi.org/10.1016/j.biopsych.2015.02.025.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    O'Dushlaine C, Ripke S, Ruderfer DM, Hamilton SP, Fava M, Iosifescu DV, et al. Rare copy number variation in treatment-resistant major depressive disorder. Biol Psychiatry. 2014;76(7):536–41. https://doi.org/10.1016/j.biopsych.2013.10.028.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chapman J, Rees E, Harold D, Ivanov D, Gerrish A, Sims R, et al. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer’s disease risk. Hum Mol Genet. 2013;22(4):816–24. https://doi.org/10.1093/hmg/dds476.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Schneider M, Debbané M, Bassett AS, Chow EWC, Fung WLA, Van den Bree MBM, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171(6):627–39.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Royston R, Howlin P, Waite J, Oliver C. Anxiety disorders in Williams syndrome contrasted with intellectual disability and the general population: a systematic review and meta-analysis. J Autism Dev Disord. 2016; https://doi.org/10.1007/s10803-016-2909-z.

  53. 53.

    Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med. 2015;7:91. https://doi.org/10.1186/s13073-015-0214-7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Bassett AS, Scherer SW, Brzustowicz LM. Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry. 2010;167(8):899–914. https://doi.org/10.1176/appi.ajp.2009.09071016.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet. 2014;94(3):415–25. https://doi.org/10.1016/j.ajhg.2014.02.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    McQuillin A, Bass N, Anjorin A, Lawrence J, Kandaswamy R, Lydall G, et al. Analysis of genetic deletions and duplications in the University College London bipolar disorder case control sample. Eur J Hum Genet. 2011;19(5):588–92. https://doi.org/10.1038/ejhg.2010.221.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Grozeva D, Kirov G, Conrad DF, Barnes CP, Hurles M, Owen MJ, et al. Reduced burden of very large and rare CNVs in bipolar affective disorder. Bipolar Disord. 2013;15(8):893–8. https://doi.org/10.1111/bdi.12125.

    Article  PubMed  Google Scholar 

  58. 58.

    Priebe L, Degenhardt FA, Herms S, Haenisch B, Mattheisen M, Nieratschker V, et al. Genome-wide survey implicates the influence of copy number variants (CNVs) in the development of early-onset bipolar disorder. Mol Psychiatry. 2012;17(4):421–32. https://doi.org/10.1038/mp.2011.8.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72(6):951–63. https://doi.org/10.1016/j.neuron.2011.11.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet. 2012;44(1):78–84. https://doi.org/10.1038/ng.1013.

    CAS  Article  Google Scholar 

  61. 61.

    Langley K, Martin J, Agha SS, Davies C, Stergiakouli E, Holmans P, et al. Clinical and cognitive characteristics of children with attention-deficit hyperactivity disorder, with and without copy number variants. Br J Psychiatry. 2011;199(5):398–403. https://doi.org/10.1192/bjp.bp.111.092130.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Martin J, Cooper M, Hamshere ML, Pocklington A, Scherer SW, Kent L, et al. Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: evidence from copy number variants. J Am Acad Child Adolesc Psychiatry. 2014;53(7):761–770 e26. https://doi.org/10.1016/j.jaac.2014.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367(14):1321–31. https://doi.org/10.1056/NEJMoa1200395.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Sahoo T, Theisen A, Rosenfeld JA, Lamb AN, Ravnan JB, Schultz RA, et al. Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genet Med. 2011;13(10):868–80. https://doi.org/10.1097/GIM.0b013e3182217a06.

    Article  PubMed  Google Scholar 

  65. 65.

    Vorstman JA, Parr JR, Moreno-De-Luca D, Anney RJ, Nurnberger JI Jr, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017; https://doi.org/10.1038/nrg.2017.4.

  66. 66.

    Glassford MR, Rosenfeld JA, Freedman AA, Zwick ME, Mulle JG, Unique Rare Chromosome Disorder Support G. Novel features of 3q29 deletion syndrome: results from the 3q29 registry. Am J Med Genet A. 2016;170A(4):999–1006. https://doi.org/10.1002/ajmg.a.37537.

    Article  PubMed  Google Scholar 

  67. 67.

    Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, et al. A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders. J Med Genet. 2012;49(10):660–8. https://doi.org/10.1136/jmedgenet-2012-101203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Bernier R, Hudac CM, Chen Q, Zeng C, Wallace AS, Gerdts J, et al. Developmental trajectories for young children with 16p11.2 copy number variation. Am J Med Genet B Neuropsychiatr Genet. 2017;174(4):367–80. https://doi.org/10.1002/ajmg.b.32525.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Vorstman JA, Breetvelt E, Duijff SN, Jalbrzikowsk M, Vogels A, Swillen A, et al. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome. JAMA Psychiatry. 2015;72(4):377–85.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Ziats MN, Goin-Kochel RP, Berry LN, Ali M, Ge J, Guffey D, et al. The complex behavioral phenotype of 15q13.3 microdeletion syndrome. Genet Med. 2016;18(11):1111–8. https://doi.org/10.1038/gim.2016.9.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Green Snyder L, D'Angelo D, Chen Q, Bernier R, Goin-Kochel RP, Wallace AS, et al. Autism spectrum disorder, developmental and psychiatric features in 16p11.2 duplication. J Autism Dev Disord. 2016;46(8):2734–48. https://doi.org/10.1007/s10803-016-2807-4.

    Article  PubMed  Google Scholar 

  72. 72.

    Hippolyte L, Maillard AM, Rodriguez-Herreros B, Pain A, Martin-Brevet S, Ferrari C, et al. The number of genomic copies at the 16p11.2 locus modulates language, verbal memory, and inhibition. Biol Psychiatry. 2016;80(2):129–39. https://doi.org/10.1016/j.biopsych.2015.10.021.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    D'Angelo D, Lebon S, Chen Q, Martin-Brevet S, Snyder LG, Hippolyte L, et al. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry. 2016;73(1):20–30. https://doi.org/10.1001/jamapsychiatry.2015.2123.

    Article  PubMed  Google Scholar 

  74. 74.

    de Villiers J, Porteous M. Genetic testing of adults with intellectual disability. Psychiatrist. 2012;36:409–13.

    Article  Google Scholar 

  75. 75.

    Wolfe K, Strydom A, Morrogh D, Carter J, Cutajar P, Eyeoyibo M, et al. Chromosomal microarray testing in adults with intellectual disability presenting with comorbid psychiatric disorders. Eur J Hum Genet. 2016;25(1):66–72. https://doi.org/10.1038/ejhg.2016.107.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Bassett AS, Chow EW, Husted J, Hodgkinson KA, Oechslin E, Harris L, et al. Premature death in adults with 22q11.2 deletion syndrome. J Med Genet. 2009;46(5):324–30. https://doi.org/10.1136/jmg.2008.063800.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Costain G, Chow E, Silversides C, Bassett A. Sex differences in reproductive fitness contribute to preferential maternal transmission of 22q11.2 deletions. J Med Genet. 2011;48(12):819–24. https://doi.org/10.1136/jmedgenet-2011-100440.

    Article  PubMed  Google Scholar 

  78. 78.

    Costain G. Parental expression is overvalued in the interpretation of rare inherited variants. Eur J Hum Genet. 2015;23(1):4–7. https://doi.org/10.1038/ejhg.2014.64.

    Article  PubMed  Google Scholar 

  79. 79.

    Butcher N, Kiehl T, Hazrati L, Chow E, Rogaeva E, Lang A, et al. Association between early-onset Parkinson disease and 22q11.2 deletion syndrome: identification of a novel genetic form of Parkinson disease and its clinical implications. JAMA Neurology. 2013;70(11):1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Mok KY, Sheerin U, Simon-Sanchez J, Salaka A, Chester L, Escott-Price V, et al. Deletions at 22q11.2 in idiopathic Parkinson’s disease: a combined analysis of genome-wide association data. Lancet Neurol. 2016;15(6):585–96. https://doi.org/10.1016/S1474-4422(16)00071-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Costain G, Bassett A. Individualizing recurrence risks for severe mental illness: epidemiologic and molecular genetic approaches. Schizophr Bull. 2014;40(1):21–3. https://doi.org/10.1093/schbul/sbt133.

    Article  PubMed  Google Scholar 

  82. 82.

    Costain G, Chow EW, Ray PN, Bassett AS. Caregiver and adult patient perspectives on the importance of a diagnosis of 22q11.2 deletion syndrome. J Intellect Disabil Res. 2012;56(6):641–51. https://doi.org/10.1111/j.1365-2788.2011.01510.x.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Costain G, Lionel AC, Fu F, Stavropoulos DJ, Gazzellone MJ, Marshall CR, et al. Adult neuropsychiatric expression and familial segregation of 2q13 duplications. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(4):337–44. https://doi.org/10.1002/ajmg.b.32236.

    Article  PubMed  Google Scholar 

  84. 84.

    Kogan JH, Gross AK, Featherstone RE, Shin R, Chen Q, Heusner CL, et al. Mouse model of chromosome 15q13.3 microdeletion syndrome demonstrates features related to autism spectrum disorder. J Neurosci. 2015;35(49):16282–94. https://doi.org/10.1523/JNEUROSCI.3967-14.2015.

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, et al. Modeling a model: mouse genetics, 22q11.2 deletion syndrome, and disorders of cortical circuit development. Prog Neurobiol. 2015;130:1–28. https://doi.org/10.1016/j.pneurobio.2015.03.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Arbogast T, Ouagazzal AM, Chevalier C, Kopanitsa M, Afinowi N, Migliavacca E, et al. Reciprocal effects on neurocognitive and metabolic phenotypes in mouse models of 16p11.2 deletion and duplication syndromes. PLoS Genet. 2016;12(2):e1005709. https://doi.org/10.1371/journal.pgen.1005709.

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Blizinsky KD, Diaz-Castro B, Forrest MP, Schurmann B, Bach AP, Martin-de-Saavedra MD, et al. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub. Proc Natl Acad Sci U S A. 2016;113(30):8520–5. https://doi.org/10.1073/pnas.1607014113.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Voll SL, Boot E, Butcher NJ, Cooper S, Heung T, Chow EW, et al. Obesity in adults with 22q11.2 deletion syndrome. Genet Med. 2017;19(2):204–8. https://doi.org/10.1038/gim.2016.98.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Loviglio MN, Leleu M, Mannik K, Passeggeri M, Giannuzzi G, van der Werf I, et al. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol Psychiatry. 2017;22(6):836–49. https://doi.org/10.1038/mp.2016.84.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Maillard AM, Hippolyte L, Rodriguez-Herreros B, Chawner SJ, Dremmel D, Aguera Z, et al. 16p11.2 locus modulates response to satiety before the onset of obesity. Int J Obes. 2016;40(5):870–6. https://doi.org/10.1038/ijo.2015.247.

    CAS  Article  Google Scholar 

  91. 91.

    Butcher N, Fung W, Fitzpatrick L, Guna A, Andrade D, Lang A, et al. Response to clozapine in a clinically identifiable subtype of schizophrenia. Br J Psychiatry. 2015;206(6):484–91. https://doi.org/10.1192/bjp.bp.114.151837.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Shiow LR, Paris K, Akana MC, Cyster JG, Sorensen RU, Puck JM. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol. 2009;131(1):24–30. https://doi.org/10.1016/j.clim.2008.11.002.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367(14):1321–31. https://doi.org/10.1056/NEJMoa1200395.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Bassett AS, Lowther C, Merico D, Costain G, Chow EWC, van Amelsvoort T et al. Rare genome-wide copy number variation and expression of schizophrenia in 22q11.2 deletion syndrome. International 22q11.2DS Brain and Behavior Consortium. Am J Psychiatry. 2017 https://doi.org/10.1176/appi.ajp.2017.16121417.

  95. 95.

    Merico D, Zarrei M, Costain G, Ogura L, Alipanahi B, Gazzellone MJ, et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in humans with 22q11.2 deletion syndrome. G3 (Bethesda). 2015;5(11):2453–61. https://doi.org/10.1534/g3.115.021345.

    Article  Google Scholar 

  96. 96.

    Moreno-De-Luca A, Evans DW, Boomer KB, Hanson E, Bernier R, Goin-Kochel RP, et al. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry. 2015;72(2):119–26. https://doi.org/10.1001/jamapsychiatry.2014.2147.

    Article  PubMed  Google Scholar 

  97. 97.

    Morrow EM. Quantifying the effects of rare variants in pedigrees: how far does the apple fall from the tree? JAMA psychiatry. 2015;72(2):106–7. https://doi.org/10.1001/jamapsychiatry.2014.2442.

    Article  PubMed  Google Scholar 

  98. 98.

    Duyzend MH, Nuttle X, Coe BP, Baker C, Nickerson DA, Bernier R, et al. Maternal modifiers and parent-of-origin bias of the autism-associated 16p11.2 CNV. Am J Hum Genet. 2016;98(1):45–57. https://doi.org/10.1016/j.ajhg.2015.11.017.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Yuen RKC, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11. https://doi.org/10.1038/nn.4524.

    CAS  Article  PubMed Central  Google Scholar 

  100. 100.

    Stavropoulos DJ, Merico D, Jobling R, Bowdin S, Monfared N, Thiruvahindrapuram B, et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. npj Genomic Medicine. 2016;1:1–9. https://doi.org/10.1038/npjgenmed.2015.12.

    Article  Google Scholar 

  101. 101.

    Petrikin JE, Willig LK, Smith LD, Kingsmore SF. Rapid whole genome sequencing and precision neonatology. Semin Perinatol. 2015;39(8):623–31. https://doi.org/10.1053/j.semperi.2015.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Chelsea Lowther is supported by a Frederick Banting and Charles Best Canadian Institutes of Health Research Doctoral Award. Anne S. Bassett holds the Dalglish Chair in 22q11.2 Deletion Syndrome at the University Health Network.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anne S. Bassett.

Ethics declarations

Conflict of Interest

Chelsea Lowther, Gregory Costain, Danielle A. Baribeau, and Anne S. Bassett declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not involve direct studies with human or animal. The article is a review of multiple studies, several of which involve human subjects by the authors.

Additional information

This article is part of the Topical Collection on Genetic Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lowther, C., Costain, G., Baribeau, D.A. et al. Genomic Disorders in Psychiatry—What Does the Clinician Need to Know?. Curr Psychiatry Rep 19, 82 (2017). https://doi.org/10.1007/s11920-017-0831-5

Download citation

Keywords

  • Schizophrenia
  • Autism
  • ADHD
  • Genomic disorder
  • Copy number variation
  • CNV