Skip to main content

Traumatic Stress and Accelerated Cellular Aging: From Epigenetics to Cardiometabolic Disease

Abstract

Purpose of Review

The aim of this paper is to review the recent literature on traumatic stress-related accelerated aging, including a focus on cellular mechanisms and biomarkers of cellular aging and on the clinical manifestations of accelerated biological aging.

Recent Findings

Multiple lines of research converge to suggest that PTSD is associated with accelerated aging in the epigenome, and the immune and inflammation systems, and this may be reflected in premature onset of cardiometabolic and cardiovascular disease.

Summary

The current state of research paves the way for future work focused on identifying the peripheral and central biological mechanisms linking traumatic stress to accelerated biological aging and medical morbidity, with an emphasis on processes involved in inflammation, immune functioning, oxidative stress, autonomic arousal, and stress response. Ultimately, such work could help reduce the pace of biological aging and improve health and wellness.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Da Costa J. On irritable heart. Am J Med Sci. 1871;61:17–52.

    Google Scholar 

  2. 2.

    Mackenzie J. The soldier’s heart. Br Med J. 1916;1(2873):117–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rudolf RD. The irritable heart of soldiers (soldier’s heart). Can Med Assoc J. 1916;6(9):798–810.

    Google Scholar 

  4. 4.

    Wolf EJ, Schnurr PP. PTSD-related cardiovascular disease and accelerated cellular aging. Psychiatr Ann. 2016;46:527–32.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Arenson M, Cohen B. Posttraumatic stress disorder and cardiovascular disease. PTSD Research Quarterly. 2017;28(1):1–9.

    Google Scholar 

  6. 6.

    Dedart EA, Calhoun PS, Watkins LL, Sherwood A, Beckham JC. Posttraumatic stress disorder, cardiovascular, and metabolic disease: a review of the evidence. Ann Behav Med. 2010;39(1):61–78.

    Article  Google Scholar 

  7. 7.

    Edmondson D, Cohen BE. Posttraumatic stress disorder and cardiovascular disease. Prog Cardiovasc Dis. 2013;55(6):548–56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bartoli F, Carra G, Crocamo C, Carretta D, Clerici M. Metabolic syndrome in people suffering from posttraumatic stress disorder: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2013;11(5):301–8.

    Article  PubMed  Google Scholar 

  9. 9.

    Blessing EM, Reus V, Mellon SH, Wolkowitz OM, Flory JD, Bierer L, et al. Biological predictors of insulin resistance associated with posttraumatic stress disorder in young military veterans. Psychoneuroendocrinology. 2017;82:91–7.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    • Rosenbaum S, Stubbs B, Ward PB, Stell Z, Lederman O, Vancampfort D. The prevalence and risk of metabolic syndrome and its components among people with posttraumatic stress disorder: a systematic review and meta-analysis. Metabolism. 2015;64(8):926–33. This meta-analysis concluded that the prevalence of metabolic syndrome among individuals with PTSD was near 40%.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    • Wolf EJ, Bovin MJ, Green JD, Mitchell KS, Stoop TB, Barretto KM, et al. Longitudinal associations between post-traumatic stress disorder and metabolic syndrome severity. Psychol Med. 2016;46(10):2215–26. This was the first longitudinal study of the association between PTSD and metabolic syndrome which controlled for baseline metabolic syndrome.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wolf EJ, Sadeh N, Leritz EC, Logue MW, Stoop TB, McGlinchey R, et al. Posttraumatic stress disorder as a catalyst for the association between metabolic syndrome and reduced cortical thickness. Biol Psychiatry. 2016;80(5):363–71.

    Article  PubMed  Google Scholar 

  13. 13.

    NCEP. Executive summary of the third report of the National Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.

    Article  Google Scholar 

  14. 14.

    Song SW, Chung JH, Rho JS, Lee YA, Lim HK, Kang SG, et al. Regional cortical thickness and subcortical volume changes in patients with metabolic syndrome. Brain Imaging Behav. 2015;9(3):588–96.

    Article  PubMed  Google Scholar 

  15. 15.

    Green E, Fairchild JK, Kinoshita LM, Art Noda MS, Yesavage J. Effects of posttraumatic stress disorder and metabolic syndrome on cognitive aging in veterans. Gerontologist. 2016;56(1):72–81.

    Article  PubMed  Google Scholar 

  16. 16.

    Sumner JA, Hagan K, Grodstein F, Roberts AL, Harel B, Koenen KC. Posttraumatic stress disorder symptoms and cognitive function in a large cohort of middle-aged women. Depress Anxiety. 2017;34(4):356–66.

    Article  PubMed  Google Scholar 

  17. 17.

    Yaffe K, Vittinghoff E, Lindquist K, Barnes D, Covinsky KE, Neylan T, et al. Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry. 2010;67(6):608–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lindemer ER, Salat DH, Leritz EC,McGlinchey RE, Milberg WP. Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF Veterans and the impact of comorbid TBI. Neuroimage Clin. 2013;2:601–11.

  19. 19.

    Mohlenhoff BS, O’Donovan A, Weiner MW, Neylan TC. Inflammation, sleep and dementia risk in posttraumatic stress disorder: a review. Curr Psychiatry Rep 2017: in press.

  20. 20.

    Edmondson D, Kronish IM, Shaffer JA, Falzon L, Burg MM. Posttraumatic stress disorder and risk for coronary heart dis­ease: a meta-analytic review. Am Heart J. 2013;166:806–814.

  21. 21.

    Beristianos MH, Yaffe K, Cohen B. Byers AL PTSD and risk of incident cardiovascular disease in aging veterans. Am J Geriatr Psychiatry. 2016;24(3):192–200.

    Article  PubMed  Google Scholar 

  22. 22.

    Vaccarino V, Goldberg J, Rooks C, Shah AJ, Veledar E, Faber TL, et al. Post-traumatic stress disorder and incidence of coronary heart disease: a twin study. J Am Coll Cardiol. 2013;62(11):970–8.

    Article  PubMed  Google Scholar 

  23. 23.

    Roy SS, Foraker RE, Girton RA, Mansfield AJ. Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans. Am J Public Health. 2015;105(4):757–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Sumner JA, Kubzansky LD, Roberts AL, Gilsanz P, Chen Q, Winning A, et al. Post-traumatic stress disorder symptoms and risk of hypertension over 22 years in a large cohort of younger and middle-aged women. Psychol Med. 2016;46(15):3105–16.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gradus JL, Farkas DK, Svensson E, Ehrenstein V, Lash TL, Milstein A, et al. Associations between stress disorders and cardiovascular disease events in the Danish population. BMJ Open. 2015;5(12):e009334.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sumner JA, Kubzansky LD, Elkind MS, Roberts AL, Agnew-Blais J, Chen Q, et al. Trauma exposure and posttraumatic stress disorder symptoms predict onset of cardiovascular events in women. Circulation. 2015;132:251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Taylor-Clift A, Holmgreen L, Hobfoll SE, Gerhart JI, Richardson D, Calvin JE, et al. Traumatic stress and cardiopulmonary disease burden among low-income, urban heart failure patients. J Affect Disord. 2016;190:227–34.

    Article  PubMed  Google Scholar 

  28. 28.

    Koenen KC, Sumner JA, Gilsanz P, Glymour MM, Ratanatharathorn A, Rimm EB, et al. Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice. Psychol Med. 2017;47(2):209–25.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Levine AB, Levine LM, Levine TB. Posttraumatic stress disorder and cardiometabolic disease. Cardiology. 2014;127:1–19.

    Article  PubMed  Google Scholar 

  30. 30.

    •• Miller MW, Sadeh N. Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol Psychiatry. 2014;19(11):1156–62. This is an excellent review paper that outlines the case for PTSD and accelerated aging via oxidative stress.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sumner JA, Duncan LE, Wolf EJ, Amstadter AB, Baker DG, Beckham JC, et al. Letter to the editor: posttraumatic stress disorder has genetic overlap with cardiometabolic traits. Psychol Med. 2017;4:1–4.

    Google Scholar 

  32. 32.

    Pollard HB, Shivakumar C, Starr J, Eidelman O, Jacobowitz DM, Dalgard CL, et al. “Soldier’s heart”: a genetic basis for elevated cardiovascular disease risk associated with post-traumatic stress disorder. Front Mol Neurosci. 2016;9:87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry. 2015;20(12):1538–45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wolf EJ, Miller DR, Logue MW, Sumner J, Stoop TB, Leritz EC. Contributions of polygenic risk for obesity to PTSD-related metabolic syndrome and cortical thickness. Brain Behav Immun. 2017;65:328–336. https://www.ncbi.nlm.nih.gov/pubmed/28579519.

  35. 35.

    Lavagnino L, Arnone D, Cao B, Soares JC, Selvaraj S. Inhibitory control in obesity and binge eating disorder: a systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci Biobehav. 2016;68:714–26.

    Article  Google Scholar 

  36. 36.

    Campisi J, Fagagna FDA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Fougère B, Boulanger E, Nourhashémi F, Guyonnet S, Cesari M. Chronic inflammation: accelerator of biological aging. J Gerontol A Biol Sci Med Sci 2016: glw240. https://www.ncbi.nlm.nih.gov/pubmed/28003373.

  38. 38.

    Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    •• Epel ES. Psychological and metabolic stress: a recipe for accelerated cellular aging. Hormones (Athens). 2009;8(1):7–22. This is an excellent review of the link between stress and telomere length.

    Article  Google Scholar 

  40. 40.

    Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev. 2015;55:333–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Darrow SM, Verhoeven JE, Révész D, Lindqvist D, Penninx BW, Delucchi KL, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med. 2016;78(7):776–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Roberts AL, Koenen KC, Chen Q, Gilsanz P, Mason SM, Prescott J, et al. Posttraumatic stress disorder and accelerated aging: PTSD and leukocyte telomere length in a sample of civilian women. Depress Anxiety. 2017;34(5):391–400.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Bersani FS, Lindqvist D, Mellon SH, Epel ES, Yehuda R, Flory J, et al. Association of dimensional psychological health measures with telomere length in male war veterans. J Affect Disord. 2016;190:537–42.

    Article  PubMed  Google Scholar 

  44. 44.

    Barrett JH, Iles MM, Dunning AM, Pooley KA. Telomere length and common disease: study design and analytical challenges. Hum Genet. 2015;134(7):679–89.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Müezzinler A, Zaineddin AK, Brenner H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 2013;12(2):509–19.

    Article  PubMed  Google Scholar 

  46. 46.

    Lowe D, Horvath S, Raj K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget. 2016;7(8):8524–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mathur MB, Epel E, Kind S, Desai M, Parks CG, Sandler DP, et al. Perceived stress and telomere length: a systematic review, meta-analysis, and methodologic considerations for advancing the field. Brain Behav Immun. 2016;54:158–69.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    •• Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. This paper describes the development of the multi-tissue DNA methylation age algorithm.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    •• Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67. This paper describes the development of the blood-based DNA methylation age algorithm which has been subsequently associated with PTSD.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafé M, et al. Acceleration of leukocytes’ epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget. 2017;8(14):23237–45.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Levine AJ, Quach A, Moore DJ, Achim CL, Soontornniyomkii V, Masliah E, et al. Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders. J Neuro-Oncol. 2016;22(3):366–75.

    CAS  Google Scholar 

  53. 53.

    Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging. 2015;7(12):1198–211.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging. 2015;7(12):1130–42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging. 2016;8(9):1844–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    •• Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015:16:25. This was the first study to show an association between accelerated DNA methylation age and mortality, an important step towards validating the clinical utility of the DNA methylation age metric.

  57. 57.

    Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenetics. 2016;8(1):64. https://www.ncbi.nlm.nih.gov/pubmed/27274774.

  58. 58.

    Boks MP, van Mierlo HC, Rutten BP, Radstake TR, De Witte L, Geuze E, et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology. 2015;51:506–12.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 2015;16:266.

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    •• Wolf EJ, Logue MW, Hayes JP, Sadeh N, Schichman SA, Stone A, et al. Accelerated DNA methylation age: associations with PTSD and neural integrity. Psychoneuroendocrinology. 2016;63:155–62. This is the first paper to show an association between PTSD and accelerated DNA methylation age (controlling for chronological age).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Wolf EJ, Logue MW, Stoop TB, Schichman SA, Stone A, Sadeh N, Hayes JP, Miller MW. Accelerated DNA methylation age: associations with PTSD and mortality. Psychosom Med 2017:in press.

  62. 62.

    Wolf EJ, Maniates H, Nugent N, Maihofer AX, Armstrong D, Ratanatharathorn A, et al. Traumatic stress and accelerated DNA methylation age: a meta-analysis. 2017:under review.

  63. 63.

    Ratanatharathorn A, Boks MP, Maihofer AX, Aiello AE, Amstadter AB, Ashley-Koch AE, et al. Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site analysis pipeline. Am J Med Genet B Neuropsychiatr Genet 2017. http://dx.doi.org/10.1002/ajmg.b.32568.

  64. 64.

    Pawelec G. Immunity and ageing in man. Exp Gerontol. 2006;41:1239–42.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Löfgren S, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol. 2005;60:556–65.

    Article  Google Scholar 

  66. 66.

    Macaulay R, Akbar AN, Henson SM. The role of the T cell in age-related inflammation. Age. 2013;35:563–72.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Franceschi C, Valensin S, Bonafè M, Paolisso G, Yashin A, Monti D, et al. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol. 2000;35:879–96.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    • Fülöp T, Dupuis G, Witkowski JM, Larbi A. The role of immunosenescence in the development of age-related diseases. J Clin Res. 2016;68:84–91. This is a very accessible review paper concerning the link between immune system decline and age-related disorders.

    Google Scholar 

  69. 69.

    Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age. 2013;35:963–71.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    • Aiello AE, Dowd JB, Jayabalasingham B, Feinstein L, Uddin M, Simanek AM, et al. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit. Psychoneuroendocrinology. 2016;67:133–41. This is the largest study to date of the association between immune parameters and PTSD.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Sommershof A, Aichinger H, Engler H, Adenauer H, Catani C, Boneberg EM, et al. Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav Immun. 2009;23(8):1117–24.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    O’Donovan A, Cohen BE, Seal KH, Bertenthal D, Margaretten M, Nishimi K, et al. Elevated risk for autoimmune disorders in Iraq and Afghanistan veterans with posttraumatic stress disorder. Biol Psychiatry. 2015;77(4):365–74.

    Article  PubMed  Google Scholar 

  73. 73.

    Miller MW, Lin AP, Wolf EJ, Miller DM. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv Rev Psychiatry 2017:in press.

  74. 74.

    Rosen RL, Levy-Carrick N, Reibman J, Xu N, Shao Y, Liu M, et al. Elevated C-reactive protein and posttraumatic stress pathology among survivors of the 9/11 Word Trade Center attacks. J Psychiatr Res. 2017;89:14–21.

    Article  PubMed  Google Scholar 

  75. 75.

    O’Donovan A, Ahmadian AJ, Neylan TC, Pacult MA, Edmondson D, Cohen BE. Current posttraumatic stress disorder and exaggerated threat sensitivity associated with elevated inflammation in the Mind Your Heart Study. Brain Behav Immun. 2017;60:198–205.

    Article  PubMed  Google Scholar 

  76. 76.

    • Sumner JA, Qixuan C, Roberts AL, Winning A, Rimm EB, Gilsanz P, et al. Cross-sectional and longitudinal associations of chronic posttraumatic stress disorder with inflammatory and endothelial function markers in women. Biol Psychiatry 2017:in press. This is a very recent manuscript providing evidence of longitudinal associations between PTSD and reduced endothelial functioning .

  77. 77.

    Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2(11):1002–12.

    Article  PubMed  Google Scholar 

  78. 78.

    Grenon SM, Owens CD, Alley H, Perez S, Whooley MA, Neylan TC, et al. Posttraumatic stress disorder is associated with worse endothelial function among veterans. J Am Heart Assoc. 2016;5(3):e003010.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging. 2017;9(2):419–46.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171.

  81. 81.

    Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L. Oxidative stress, inflamm-aging and immunosenescence. J Proteome. 2011;74(11):2313–23.

    CAS  Article  Google Scholar 

  82. 82.

    Williamson JB, Porges EC, Lamb DG, Porges SW. Maladaptive autonomic regulation in PTSD accelerates physiological aging. Front Psychol. 2015;5:1571.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Dennis PA, Kimbrel NA, Sherwood A, Calhoun PS, Watkins LL, Dennis MF, et al. Trauma and autonomic dysregulation: episodic-versus systemic-negative affect underlying cardiovascular risk in posttraumatic stress disorder. Psychosom Med. 2017;79(5):496–505.

    Article  PubMed  Google Scholar 

  84. 84.

    • Stubbs TM, Bonder MJ, Stark AK, Krueger F, von Meyenn F, BI Ageing Clock Team, et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 2017;18(1):68. This study extending DNA methylation age to mouse models provides an approach for testing the biological mechanisms of accelerated aging.

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Wagner W. Epigenetic aging clocks in mice and men. Genome Biol. 2017;18(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lu AT, Hannon E, Levine ME, Crimmins EM, Lunnon K, Mill J, et al. Genetic architecture of epigenetic and neuronal ageing rates in human brain regions. Nat Commun. 2017;8:15353.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299(11):1291–305.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Mehta D, Binder EB. Gene x environment vulnerability factors for PTSD: the HPA-axis. Neuropharmacology. 2012;62(2):654–62.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16(1):33–41.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Sadeh N, Wolf EJ, Logue MW, Hayes JP, Stone A, Griffin LM, et al. Epigenetic variation at SKA2 predicts suicide phenotypes and internalizing psychopathology. Depress Anxiety. 2016;33(4):308–15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Boks MP, Rutten BP, Geuze E, Houtepen LC, Vermetten E, Kaminsky Z, et al. SKA2 methylation is involved in cortisol stress reactivity and predicts the development of post-traumatic stress disorder (PTSD) after military deployment. Neuropsychopharmacology. 2016;41(5):1350–6.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    •• Logue MW, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2013;18(8):937–42. This was the first published genome-wide association study of PTSD which revealed evidence for a link between the RORA gene and PTSD, which is the basis for further interest between PTSD and oxidative stress.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Miller MW, Wolf EJ, Sadeh N, Logue M, Spielberg JM, Hayes JP, et al. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex. Psychoneuroendocrinology. 2015;62:359–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017; doi:10.1038/mp.2017.40.

  96. 96.

    Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LFZ, Horvath S, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. elife. 2016;5:e18648.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–47.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Reddy TP, Manczak M, Calkins MJ, Mao P, Reddy AP, Shirendeb U, et al. Toxicity of neurons treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31. Int J Environ Res Public Health. 2011;8:203–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Nalecz KA, Miecz D, Berezowski V, Cecchelli R. Carnitine: transport and physiological functions in the brain. Mol Asp Med. 2004;24(5–6):551–67.

    Google Scholar 

  100. 100.

    Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry. 2000;5:616–32.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential anti- oxidant therapy for inherited neurometabolic disorders. Gene. 2014;533:469–76.

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Sitta A, Vanzin CS, Biancini GB, Manfredini V, De Oliveira AB, Wayhs CA, et al. Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol. 2011;31:429–36.

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Yang R, Daigle BJ Jr, Muhie SY, Hammamieh R, Jett M, Petzold L, et al. Core modular blood and brain biomarkers in social defeat mouse model for posttraumatic stress disorder. BMC Syst Biol 2013:7(80).

  104. 104.

    Mauro C, De Rosa V, Marelli-Berg F, Solito E. Metabolic syndrome and the immunological affair with the blood-brain barrier. Front Immunol. 2015;5:677.

    Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Hurtado-Alvarado G, Dominguez-Salazar E, Velazquez-Moctezuma J, Gomez-Gonzalez B. A2A adenosine receptor antagonism reverts the blood-brain barrier dysfunction induced by sleep restriction. PLoS One. 2016;11(11):e0167236.

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-couples signaling regulate memory. Nat Neurosci. 2015;18(3):423–34.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute on Aging of the National Institutes of Health award R03AG051877 to EJW and by Merit Review Award Number I01 CX-001276-01 to EJW from the US Department of Veterans Affairs (VA) Clinical Sciences Research and Development (CSRD) Service. This work was also supported by a Presidential Early Career Award for Scientists and Engineers (PECASE 2013A) to EJW as administered by the US Department of VA Office of Research and Development.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erika J. Wolf.

Ethics declarations

Conflict of Interest

Erika J. Wolf reports grants from NIA(NIH) (R03AG051877), VA CSR&D Merit Award (I01 CX-001276-01), and PECASE via VA ORD (PECASE 2013A).

Filomene G. Morrison declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disaster Psychiatry: Trauma, PTSD, and Related Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolf, E.J., Morrison, F.G. Traumatic Stress and Accelerated Cellular Aging: From Epigenetics to Cardiometabolic Disease. Curr Psychiatry Rep 19, 75 (2017). https://doi.org/10.1007/s11920-017-0823-5

Download citation

Keywords

  • Traumatic stress
  • PTSD
  • Accelerated aging
  • Epigenetic clock
  • Inflamm-aging
  • Immunosenescence