Skip to main content

Advertisement

Log in

Genetics of Schizophrenia: Ready to Translate?

  • Genetic Disorders (F Goes, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This is an era where we have significantly advanced the understanding of the genetic architecture of schizophrenia. In this review, we consider how this knowledge may translate into advances that will improve patient care.

Recent Findings

Large-scale genome-wide association studies (GWAS) have identified more than a hundred loci each making a small contribution to illness risk. Meta-analysis of copy number variants (CNVs) in the Psychiatric Genomics Consortium (PGC) dataset has confirmed that some variants have a moderate or large impact on risk, although these are rare in the population. Genome sequencing advances allow a much more comprehensive evaluation of genomic variation. We describe the key findings from whole exome studies to date. These studies are happening against a backdrop of growing understanding of the regulation and expression of genes and better functional tools to investigate molecular mechanisms in model systems.

Summary

We provide an overview of how recent approaches in schizophrenia genetics are converging and consider how they could impact on diagnostics, the development of personalized medicine, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance

  1. Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G. One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry. 1994;151(10):1409–16.

    Article  CAS  PubMed  Google Scholar 

  2. Matheson S, Shepherd A, Pinchbeck R, Laurens K, Carr V. Childhood adversity in schizophrenia: a systematic meta-analysis. Psychol Med. 2013;43(2):225.

    Article  CAS  PubMed  Google Scholar 

  3. Cantor-Graae E, Selten J-P. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatr. 2005;162(1):12–24.

    Article  PubMed  Google Scholar 

  4. Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "just the facts": what we know in 2008 part 1: overview. Schizophr Res. 2008;100(1–3):4–19. doi:10.1016/j.schres.2008.01.022.

    Article  PubMed  Google Scholar 

  5. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27. doi:10.1038/mp.2012.47.

    Article  CAS  PubMed  Google Scholar 

  6. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet (London, England). 2013;382(9896):951–62. doi:10.1016/s0140-6736(13)60733-3.

    Article  CAS  Google Scholar 

  7. Tiihonen J, Lonnqvist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A, et al. 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study). Lancet. 2009;374(9690):620–7. doi:10.1016/s0140-6736(09)60742-x.

    Article  PubMed  Google Scholar 

  8. Kamb A, Harper S, Stefansson K. Human genetics as a foundation for innovative drug development. Nat Biotechnol. 2013;31(11):975–8. doi:10.1038/nbt.2732.

    Article  CAS  PubMed  Google Scholar 

  9. • Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374(22):2131–41. doi:10.1056/NEJMoa1508419. This whole-genome sequencing study identified a deletion leading to inactivation of ASGR1, associated with reduced levels of non-HDL cholesterol and a resultant reduced risk of coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  10. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):6.

    Google Scholar 

  11. • Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. doi:10.1038/nature13595. This paper reported on an extensive GWAS analysis on schizophrenia, including data on up to 36,989 cases and 113,075 controls. 108 independent genomic risk loci associated with schizophrenia were identified. http://www.nature.com/nature/journal/v511/n7510/abs/nature13595.html#supplementary-information

    Article  Google Scholar 

  12. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209.

  13. Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry. 2014;75(4):276–83. doi:10.1016/j.biopsych.2013.09.018.

    Article  CAS  PubMed  Google Scholar 

  14. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7. doi:10.1038/nature08192.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry. 2012;72(8):620–8. doi:10.1016/j.biopsych.2012.05.035.

  16. Genome-wide association study identifies five new schizophrenia loci. Nature genetics. 2011;43(10):969–76. doi:10.1038/ng.940.

  17. Morris DW, Pearson RD, Cormican P, Kenny EM, O'Dushlaine CT, Lemieux Perreault L-P, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014; doi:10.1093/hmg/ddu025.

  18. • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83. doi:10.1038/nature16549. This study examined the association of schizophrenia with variation in the MHC locus, identifying a key role of excessive complement component 4 activity, possibly resulting in the synapse loss observed in schizophrenia

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet. 2015;47(12):1385–92. doi:10.1038/ng.3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17(6):782–90. doi:10.1038/nn.3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31(1):33–6. doi:10.1038/ng853.

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee N, Shi J, Garcia-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17(7):392–406. doi:10.1038/nrg.2016.27.

    Article  CAS  PubMed  Google Scholar 

  23. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51. doi:10.1038/ng1416.

    Article  CAS  PubMed  Google Scholar 

  25. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science (New York, NY). 2004;305(5683):525–8. doi:10.1126/science.1098918.

    Article  CAS  Google Scholar 

  26. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41. doi:10.1016/j.cell.2012.02.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS, et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis. 1994;182(8):476–8.

    Article  CAS  PubMed  Google Scholar 

  28. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science (New York, NY). 2008;320(5875):539–43. doi:10.1126/science.1155174.

    Article  CAS  Google Scholar 

  29. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–41. doi:http://www.nature.com/nature/journal/v455/n7210/suppinfo/nature07239_S1.html.

  30. • Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):27–35. doi:10.1038/ng.3725. This study found genome-wide significant evidence for eight CNV loci contributing to schizophrenia risk with suggestive support for a further eight candidate susceptibility and protective loci

  31. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6. doi:10.1038/nature07229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rees E, Kendall K, Pardinas AF, Legge SE, Pocklington A, Escott-Price V, et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA psychiatry. 2016;73(9):963–9. doi:10.1001/jamapsychiatry.2016.1831.

    Article  PubMed  Google Scholar 

  33. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012;17(2):142–53. doi:10.1038/mp.2011.154.

    Article  CAS  PubMed  Google Scholar 

  34. Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet. 2015;24(R1):R45–9. doi:10.1093/hmg/ddv253.

    Article  CAS  PubMed  Google Scholar 

  35. Morris DW, Pearson RD, Cormican P, Kenny EM, O'Dushlaine CT, Perreault LP, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014;23(12):3316–26. doi:10.1093/hmg/ddu025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet. 2009;18(5):988–96. doi:10.1093/hmg/ddn351.

    Article  CAS  PubMed  Google Scholar 

  37. Rees E, Walters JT, Chambert KD, O'Dushlaine C, Szatkiewicz J, Richards AL, et al. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Hum Mol Genet. 2014;23(6):1669–76. doi:10.1093/hmg/ddt540.

    Article  CAS  PubMed  Google Scholar 

  38. • Kirov G, Rees E, Walters JT, Escott-Price V, Georgieva L, Richards AL, et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75(5):378–85. doi:10.1016/j.biopsych.2013.07.022. This study estimated total penetrance of thirteen schizophrenia-associated CNVs for neurodevelopmental disorders including SCZ, DD, ASD or a congenital malformation, to be high (ranging between 10.6%-100%), with significant implications for genetic counselling

    Article  CAS  PubMed  Google Scholar 

  39. Tansey KE, Rees E, Linden DE, Ripke S, Chambert KD, Moran JL, et al. Common alleles contribute to schizophrenia in CNV carriers. Mol Psychiatry. 2016;21(8):1085–9. doi:10.1038/mp.2015.143.

    Article  CAS  PubMed  Google Scholar 

  40. Liu P, Carvalho CM, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012;22(3):211–20. doi:10.1016/j.gde.2012.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science (New York, NY). 2012;335(6070):823–8. doi:10.1126/science.1215040.

    Article  CAS  Google Scholar 

  42. Mägi R, Asimit JL, Day-Williams AG, Zeggini E, Morris AP. Genome-wide association analysis of imputed rare variants: application to seven common complex diseases. Genet Epidemiol. 2012;36(8):785–96. doi:10.1002/gepi.21675.

    PubMed  PubMed Central  Google Scholar 

  43. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–9. doi:10.1056/NEJMoa1206524.

    Article  PubMed  Google Scholar 

  44. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674–82. doi:10.1016/s0140-6736(12)61480-9.

    Article  CAS  PubMed  Google Scholar 

  45. O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science (New York, NY). 2012;338(6114):1619–22. doi:10.1126/science.1227764.

    Article  Google Scholar 

  46. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15. doi:10.1038/nature13772.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. doi:10.1038/nature12439.

    Article  CAS  PubMed  Google Scholar 

  48. Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19(4):571–7. doi:10.1038/nn.4267.

    Article  CAS  PubMed  Google Scholar 

  49. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111(4):E455–64. doi:10.1073/pnas.1322563111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506(7487):185–90. doi:10.1038/nature12975. This paper introduces the polygene score method and its application to schizophrenia

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84. doi:10.1038/nature12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84. doi:10.1038/nature12929. http://www.nature.com/nature/journal/v506/n7487/abs/nature12929.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landen M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19(11):1433–41. doi:10.1038/nn.4402. This study explored the role of rare coding mutations in schizophrenia and identified that most dURVs contributing to the disorder appeared to be inherited and enriched in brain-specific genes. The findings provide evidence of a general synaptic dysfunction in the pathogenesis of schizophrenia

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Akil H, Brenner S, Kandel E, Kendler KS, King MC, Scolnick E, et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science (New York, NY). 2010;327(5973):1580–1. doi:10.1126/science.1188654.

    Article  Google Scholar 

  56. Corvin A, Sullivan PF. What next in schizophrenia genetics for the psychiatric genomics consortium? Schizophr Bull. 2016;42(3):538–41.

    Article  PubMed  PubMed Central  Google Scholar 

  57. O'Byrne JJ, Lynch SA, Treacy EP, King MD, Betts DR, Mayne PD, et al. Unexplained developmental delay/learning disability: guidelines for best practice protocol for first line assessment and genetic/metabolic/radiological investigations. Ir J Med Sci. 2016;185(1):241–8. doi:10.1007/s11845-015-1284-7.

    Article  PubMed  Google Scholar 

  58. Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  59. Kendall KM, Rees E, Escott-Price V, Einon M, Thomas R, Hewitt J, et al. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK biobank subjects. Biol Psychiatry. 2016; doi:10.1016/j.biopsych.2016.08.014.

  60. Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505(7483):361–6. doi:10.1038/nature12818.

    Article  CAS  PubMed  Google Scholar 

  61. Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, et al. Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Med Genet A. 2005;135(2):171–80. doi:10.1002/ajmg.a.30590.

    Article  CAS  PubMed  Google Scholar 

  62. Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci. 2016;17(11):681–91. doi:10.1038/nrn.2016.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23. doi:10.1126/science.1231143.

    Article  CAS  Google Scholar 

  64. Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017; doi:10.1038/nbt.3834.

  65. Lee IS, Carvalho CM, Douvaras P, Ho S-M, Hartley BJ, Zuccherato LW, et al. Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia. 2015;1:15019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515(7527):414–8. doi:10.1038/nature13716. http://www.nature.com/nature/journal/v515/n7527/abs/nature13716.html#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci. 2017;18(4):222–35.

    Article  CAS  PubMed  Google Scholar 

  68. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016; doi:10.1038/nature16549.

  69. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65(4):446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  71. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107. doi:10.1016/j.neuroscience.2012.04.044.

    Article  CAS  PubMed  Google Scholar 

  72. • Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9. doi:10.1038/nn.3307. This study examined the point mutation in the calcium channel CACNA1C causing Timothy syndrome (a neurodevelopmental disorder) in iPSC-derived cortical neurons and identified activity-dependent dendritic retraction in neurons, providing insights into the cellular basis of Timothy syndrome and potentially other neurodevelopmental disorders

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang JP, Lencz T, Malhotra AK. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry. 2010;167(7):763–72. doi:10.1176/appi.ajp.2009.09040598.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang J-P, Malhotra AK. Pharmacogenetics of antipsychotics: recent progress and methodological issues. Expert Opin Drug Metab Toxicol. 2013;9(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  75. Lieberman JA, Yunis J, Egea E, Canoso RT, Kane JM, Yunis EJ. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry. 1990;47(10):945–8.

    Article  CAS  PubMed  Google Scholar 

  76. Yunis JJ, Corzo D, Salazar M, Lieberman JA, Howard A, Yunis EJ. HLA associations in clozapine-induced agranulocytosis. Blood. 1995;86(3):1177–83.

    CAS  PubMed  Google Scholar 

  77. Athanasiou MC, Dettling M, Cascorbi I, Mosyagin I, Salisbury BA, Pierz KA, et al. Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. The Journal of clinical psychiatry. 2011;72(4):458–63.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang J-P, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol. 2011;7(1):9–37. doi:10.1517/17425255.2011.532787.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Riglin L, Collishaw S, Richards A, Thapar AK, Maughan B, O'Donovan MC, et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. The lancet Psychiatry. 2017;4(1):57–62. doi:10.1016/s2215-0366(16)30406-0.

    Article  PubMed  Google Scholar 

  80. Ahn K, An SS, Shugart YY, Rapoport JL. Common polygenic variation and risk for childhood-onset schizophrenia. Mol Psychiatry. 2016;21(1):94–6. doi:10.1038/mp.2014.158.

    Article  CAS  PubMed  Google Scholar 

  81. Meltzer HY. Treatment-resistant schizophrenia—the role of clozapine. Curr Med Res Opin. 1997;14(1):1–20. doi:10.1185/03007999709113338.

    Article  CAS  PubMed  Google Scholar 

  82. Nielsen J, Nielsen RE, Correll CU. Predictors of clozapine response in patients with treatment-refractory schizophrenia: results from a Danish register study. J Clin Psychopharmacol. 2012;32(5):678–83. doi:10.1097/JCP.0b013e318267b3cd.

    Article  CAS  PubMed  Google Scholar 

  83. Frank J, Lang M, Witt SH, Strohmaier J, Rujescu D, Cichon S, et al. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol Psychiatry. 2015;20(2):150–1. doi:10.1038/mp.2014.56.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiden Corvin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetic Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foley, C., Corvin, A. & Nakagome, S. Genetics of Schizophrenia: Ready to Translate?. Curr Psychiatry Rep 19, 61 (2017). https://doi.org/10.1007/s11920-017-0807-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0807-5

Keywords

Navigation