Current Psychiatry Reports

, 19:61 | Cite as

Genetics of Schizophrenia: Ready to Translate?

  • Claire Foley
  • Aiden CorvinEmail author
  • Shigeki Nakagome
Genetic Disorders (F Goes, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Genetic Disorders


Purpose of Review

This is an era where we have significantly advanced the understanding of the genetic architecture of schizophrenia. In this review, we consider how this knowledge may translate into advances that will improve patient care.

Recent Findings

Large-scale genome-wide association studies (GWAS) have identified more than a hundred loci each making a small contribution to illness risk. Meta-analysis of copy number variants (CNVs) in the Psychiatric Genomics Consortium (PGC) dataset has confirmed that some variants have a moderate or large impact on risk, although these are rare in the population. Genome sequencing advances allow a much more comprehensive evaluation of genomic variation. We describe the key findings from whole exome studies to date. These studies are happening against a backdrop of growing understanding of the regulation and expression of genes and better functional tools to investigate molecular mechanisms in model systems.


We provide an overview of how recent approaches in schizophrenia genetics are converging and consider how they could impact on diagnostics, the development of personalized medicine, and drug discovery.


Schizophrenia Genomics Translational medicine Polygene score Mutations 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as • Of importance

  1. 1.
    Hegarty JD, Baldessarini RJ, Tohen M, Waternaux C, Oepen G. One hundred years of schizophrenia: a meta-analysis of the outcome literature. Am J Psychiatry. 1994;151(10):1409–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Matheson S, Shepherd A, Pinchbeck R, Laurens K, Carr V. Childhood adversity in schizophrenia: a systematic meta-analysis. Psychol Med. 2013;43(2):225.CrossRefPubMedGoogle Scholar
  3. 3.
    Cantor-Graae E, Selten J-P. Schizophrenia and migration: a meta-analysis and review. Am J Psychiatr. 2005;162(1):12–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, "just the facts": what we know in 2008 part 1: overview. Schizophr Res. 2008;100(1–3):4–19. doi: 10.1016/j.schres.2008.01.022.CrossRefPubMedGoogle Scholar
  5. 5.
    Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27. doi: 10.1038/mp.2012.47.CrossRefPubMedGoogle Scholar
  6. 6.
    Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet (London, England). 2013;382(9896):951–62. doi: 10.1016/s0140-6736(13)60733-3.CrossRefGoogle Scholar
  7. 7.
    Tiihonen J, Lonnqvist J, Wahlbeck K, Klaukka T, Niskanen L, Tanskanen A, et al. 11-year follow-up of mortality in patients with schizophrenia: a population-based cohort study (FIN11 study). Lancet. 2009;374(9690):620–7. doi: 10.1016/s0140-6736(09)60742-x.CrossRefPubMedGoogle Scholar
  8. 8.
    Kamb A, Harper S, Stefansson K. Human genetics as a foundation for innovative drug development. Nat Biotechnol. 2013;31(11):975–8. doi: 10.1038/nbt.2732.CrossRefPubMedGoogle Scholar
  9. 9.
    • Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med. 2016;374(22):2131–41. doi: 10.1056/NEJMoa1508419. This whole-genome sequencing study identified a deletion leading to inactivation of ASGR1, associated with reduced levels of non-HDL cholesterol and a resultant reduced risk of coronary artery disease. CrossRefPubMedGoogle Scholar
  10. 10.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):6.Google Scholar
  11. 11.
    • Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. doi: 10.1038/nature13595. This paper reported on an extensive GWAS analysis on schizophrenia, including data on up to 36,989 cases and 113,075 controls. 108 independent genomic risk loci associated with schizophrenia were identified. CrossRefGoogle Scholar
  12. 12.
    Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209.Google Scholar
  13. 13.
    Corvin A, Morris DW. Genome-wide association studies: findings at the major histocompatibility complex locus in psychosis. Biol Psychiatry. 2014;75(4):276–83. doi: 10.1016/j.biopsych.2013.09.018.CrossRefPubMedGoogle Scholar
  14. 14.
    Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7. doi: 10.1038/nature08192.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry. 2012;72(8):620–8. doi: 10.1016/j.biopsych.2012.05.035.
  16. 16.
    Genome-wide association study identifies five new schizophrenia loci. Nature genetics. 2011;43(10):969–76. doi: 10.1038/ng.940.
  17. 17.
    Morris DW, Pearson RD, Cormican P, Kenny EM, O'Dushlaine CT, Lemieux Perreault L-P, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014; doi: 10.1093/hmg/ddu025.
  18. 18.
    • Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83. doi: 10.1038/nature16549. This study examined the association of schizophrenia with variation in the MHC locus, identifying a key role of excessive complement component 4 activity, possibly resulting in the synapse loss observed in schizophrenia CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet. 2015;47(12):1385–92. doi: 10.1038/ng.3431.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17(6):782–90. doi: 10.1038/nn.3708.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31(1):33–6. doi: 10.1038/ng853.CrossRefPubMedGoogle Scholar
  22. 22.
    Chatterjee N, Shi J, Garcia-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17(7):392–406. doi: 10.1038/nrg.2016.27.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51. doi: 10.1038/ng1416.CrossRefPubMedGoogle Scholar
  25. 25.
    Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science (New York, NY). 2004;305(5683):525–8. doi: 10.1126/science.1098918.CrossRefGoogle Scholar
  26. 26.
    Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148(6):1223–41. doi: 10.1016/j.cell.2012.02.039.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS, et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis. 1994;182(8):476–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science (New York, NY). 2008;320(5875):539–43. doi: 10.1126/science.1155174.CrossRefGoogle Scholar
  29. 29.
    Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–41. doi:
  30. 30.
    • Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49(1):27–35. doi: 10.1038/ng.3725. This study found genome-wide significant evidence for eight CNV loci contributing to schizophrenia risk with suggestive support for a further eight candidate susceptibility and protective loci
  31. 31.
    Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6. doi: 10.1038/nature07229.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rees E, Kendall K, Pardinas AF, Legge SE, Pocklington A, Escott-Price V, et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA psychiatry. 2016;73(9):963–9. doi: 10.1001/jamapsychiatry.2016.1831.CrossRefPubMedGoogle Scholar
  33. 33.
    Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012;17(2):142–53. doi: 10.1038/mp.2011.154.CrossRefPubMedGoogle Scholar
  34. 34.
    Kirov G. CNVs in neuropsychiatric disorders. Hum Mol Genet. 2015;24(R1):R45–9. doi: 10.1093/hmg/ddv253.CrossRefPubMedGoogle Scholar
  35. 35.
    Morris DW, Pearson RD, Cormican P, Kenny EM, O'Dushlaine CT, Perreault LP, et al. An inherited duplication at the gene p21 protein-activated kinase 7 (PAK7) is a risk factor for psychosis. Hum Mol Genet. 2014;23(12):3316–26. doi: 10.1093/hmg/ddu025.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rujescu D, Ingason A, Cichon S, Pietilainen OP, Barnes MR, Toulopoulou T, et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet. 2009;18(5):988–96. doi: 10.1093/hmg/ddn351.CrossRefPubMedGoogle Scholar
  37. 37.
    Rees E, Walters JT, Chambert KD, O'Dushlaine C, Szatkiewicz J, Richards AL, et al. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Hum Mol Genet. 2014;23(6):1669–76. doi: 10.1093/hmg/ddt540.CrossRefPubMedGoogle Scholar
  38. 38.
    • Kirov G, Rees E, Walters JT, Escott-Price V, Georgieva L, Richards AL, et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry. 2014;75(5):378–85. doi: 10.1016/j.biopsych.2013.07.022. This study estimated total penetrance of thirteen schizophrenia-associated CNVs for neurodevelopmental disorders including SCZ, DD, ASD or a congenital malformation, to be high (ranging between 10.6%-100%), with significant implications for genetic counselling CrossRefPubMedGoogle Scholar
  39. 39.
    Tansey KE, Rees E, Linden DE, Ripke S, Chambert KD, Moran JL, et al. Common alleles contribute to schizophrenia in CNV carriers. Mol Psychiatry. 2016;21(8):1085–9. doi: 10.1038/mp.2015.143.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu P, Carvalho CM, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012;22(3):211–20. doi: 10.1016/j.gde.2012.02.012.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science (New York, NY). 2012;335(6070):823–8. doi: 10.1126/science.1215040.CrossRefGoogle Scholar
  42. 42.
    Mägi R, Asimit JL, Day-Williams AG, Zeggini E, Morris AP. Genome-wide association analysis of imputed rare variants: application to seven common complex diseases. Genet Epidemiol. 2012;36(8):785–96. doi: 10.1002/gepi.21675.PubMedPubMedCentralGoogle Scholar
  43. 43.
    de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–9. doi: 10.1056/NEJMoa1206524.CrossRefPubMedGoogle Scholar
  44. 44.
    Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674–82. doi: 10.1016/s0140-6736(12)61480-9.CrossRefPubMedGoogle Scholar
  45. 45.
    O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science (New York, NY). 2012;338(6114):1619–22. doi: 10.1126/science.1227764.CrossRefGoogle Scholar
  46. 46.
    De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15. doi: 10.1038/nature13772.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. doi: 10.1038/nature12439.CrossRefPubMedGoogle Scholar
  48. 48.
    Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19(4):571–7. doi: 10.1038/nn.4267.CrossRefPubMedGoogle Scholar
  49. 49.
    Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111(4):E455–64. doi: 10.1073/pnas.1322563111.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    • Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506(7487):185–90. doi: 10.1038/nature12975. This paper introduces the polygene score method and its application to schizophrenia CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84. doi: 10.1038/nature12929.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84. doi: 10.1038/nature12929. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    • Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landen M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19(11):1433–41. doi: 10.1038/nn.4402. This study explored the role of rare coding mutations in schizophrenia and identified that most dURVs contributing to the disorder appeared to be inherited and enriched in brain-specific genes. The findings provide evidence of a general synaptic dysfunction in the pathogenesis of schizophrenia CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Akil H, Brenner S, Kandel E, Kendler KS, King MC, Scolnick E, et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science (New York, NY). 2010;327(5973):1580–1. doi: 10.1126/science.1188654.CrossRefGoogle Scholar
  56. 56.
    Corvin A, Sullivan PF. What next in schizophrenia genetics for the psychiatric genomics consortium? Schizophr Bull. 2016;42(3):538–41.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    O'Byrne JJ, Lynch SA, Treacy EP, King MD, Betts DR, Mayne PD, et al. Unexplained developmental delay/learning disability: guidelines for best practice protocol for first line assessment and genetic/metabolic/radiological investigations. Ir J Med Sci. 2016;185(1):241–8. doi: 10.1007/s11845-015-1284-7.CrossRefPubMedGoogle Scholar
  58. 58.
    Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399–407.CrossRefPubMedGoogle Scholar
  59. 59.
    Kendall KM, Rees E, Escott-Price V, Einon M, Thomas R, Hewitt J, et al. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK biobank subjects. Biol Psychiatry. 2016; doi: 10.1016/j.biopsych.2016.08.014.
  60. 60.
    Stefansson H, Meyer-Lindenberg A, Steinberg S, Magnusdottir B, Morgen K, Arnarsdottir S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature. 2014;505(7483):361–6. doi: 10.1038/nature12818.CrossRefPubMedGoogle Scholar
  61. 61.
    Miles JH, Takahashi TN, Bagby S, Sahota PK, Vaslow DF, Wang CH, et al. Essential versus complex autism: definition of fundamental prognostic subtypes. Am J Med Genet A. 2005;135(2):171–80. doi: 10.1002/ajmg.a.30590.CrossRefPubMedGoogle Scholar
  62. 62.
    Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci. 2016;17(11):681–91. doi: 10.1038/nrn.2016.124.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23. doi: 10.1126/science.1231143.CrossRefGoogle Scholar
  64. 64.
    Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017; doi: 10.1038/nbt.3834.
  65. 65.
    Lee IS, Carvalho CM, Douvaras P, Ho S-M, Hartley BJ, Zuccherato LW, et al. Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia. 2015;1:15019.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515(7527):414–8. doi: 10.1038/nature13716. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci. 2017;18(4):222–35.CrossRefPubMedGoogle Scholar
  68. 68.
    Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016; doi: 10.1038/nature16549.
  69. 69.
    Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry. 1998;65(4):446–53.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.CrossRefPubMedGoogle Scholar
  71. 71.
    Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107. doi: 10.1016/j.neuroscience.2012.04.044.CrossRefPubMedGoogle Scholar
  72. 72.
    • Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R, Rasmusson R, et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9. doi: 10.1038/nn.3307. This study examined the point mutation in the calcium channel CACNA1C causing Timothy syndrome (a neurodevelopmental disorder) in iPSC-derived cortical neurons and identified activity-dependent dendritic retraction in neurons, providing insights into the cellular basis of Timothy syndrome and potentially other neurodevelopmental disorders CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang JP, Lencz T, Malhotra AK. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry. 2010;167(7):763–72. doi: 10.1176/appi.ajp.2009.09040598.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zhang J-P, Malhotra AK. Pharmacogenetics of antipsychotics: recent progress and methodological issues. Expert Opin Drug Metab Toxicol. 2013;9(2):183–91.CrossRefPubMedGoogle Scholar
  75. 75.
    Lieberman JA, Yunis J, Egea E, Canoso RT, Kane JM, Yunis EJ. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry. 1990;47(10):945–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Yunis JJ, Corzo D, Salazar M, Lieberman JA, Howard A, Yunis EJ. HLA associations in clozapine-induced agranulocytosis. Blood. 1995;86(3):1177–83.PubMedGoogle Scholar
  77. 77.
    Athanasiou MC, Dettling M, Cascorbi I, Mosyagin I, Salisbury BA, Pierz KA, et al. Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. The Journal of clinical psychiatry. 2011;72(4):458–63.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhang J-P, Malhotra AK. Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol. 2011;7(1):9–37. doi: 10.1517/17425255.2011.532787.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Riglin L, Collishaw S, Richards A, Thapar AK, Maughan B, O'Donovan MC, et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. The lancet Psychiatry. 2017;4(1):57–62. doi: 10.1016/s2215-0366(16)30406-0.CrossRefPubMedGoogle Scholar
  80. 80.
    Ahn K, An SS, Shugart YY, Rapoport JL. Common polygenic variation and risk for childhood-onset schizophrenia. Mol Psychiatry. 2016;21(1):94–6. doi: 10.1038/mp.2014.158.CrossRefPubMedGoogle Scholar
  81. 81.
    Meltzer HY. Treatment-resistant schizophrenia—the role of clozapine. Curr Med Res Opin. 1997;14(1):1–20. doi: 10.1185/03007999709113338.CrossRefPubMedGoogle Scholar
  82. 82.
    Nielsen J, Nielsen RE, Correll CU. Predictors of clozapine response in patients with treatment-refractory schizophrenia: results from a Danish register study. J Clin Psychopharmacol. 2012;32(5):678–83. doi: 10.1097/JCP.0b013e318267b3cd.CrossRefPubMedGoogle Scholar
  83. 83.
    Frank J, Lang M, Witt SH, Strohmaier J, Rujescu D, Cichon S, et al. Identification of increased genetic risk scores for schizophrenia in treatment-resistant patients. Mol Psychiatry. 2015;20(2):150–1. doi: 10.1038/mp.2014.56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Psychiatry and Neuropsychiatric Genetics Research GroupTrinity College DublinDublinIreland

Personalised recommendations