Premenstrual Dysphoric Disorder: Epidemiology and Treatment

Abstract

Recently designated as a disorder in the DSM-5, premenstrual dysphoric disorder (PMDD) presents an array of avenues for further research. PMDD’s profile, characterized by cognitive–affective symptoms during the premenstruum, is unique from that of other affective disorders in its symptoms and cyclicity. Neurosteroids may be a key contributor to PMDD’s clinical presentation and etiology, and represent a potential avenue for drug development. This review will present recent literature on potential contributors to PMDD’s pathophysiology, including neurosteroids and stress, and explore potential treatment targets.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Dennerstein L, Lehert P, Heinemann K. Epidemiology of premenstrual symptoms and disorders. Menopause Int. 2012;18:48–51.

    PubMed  Google Scholar 

  2. 2.

    Epperson C, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I, et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry. 2012;169:465–75.

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    American Psychiatric Assn A. Diagnostic and statistical manual of mental disorders (5th ed.). 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Google Scholar 

  4. 4.

    Hartlage SA, Freels S, Gotman N, Yonkers K. Criteria for premenstrual dysphoric disorder: secondary analyses of relevant data sets. Arch Gen Psychiatry. 2012;69:300–5.

    PubMed Central  PubMed  Article  Google Scholar 

  5. 5.

    Freeman EW, Halberstadt SM, Rickels K, Legler JM, Lin H, Sammel MD. Core symptoms that discriminate premenstrual syndrome. J Womens Health (Larchmt). 2011;20:29–35.

    Article  Google Scholar 

  6. 6.

    Endicott J, Nee J, Harrison W. Daily record of severity of problems (DRSP): reliability and validity. Arch Womens Ment Health. 2006;9:41–9.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Feuerstein M, Shaw WS. Measurement properties of the calendar of premenstrual experience in patients with premenstrual syndrome. J Reprod Med. 2002;47:279–89.

    PubMed  Google Scholar 

  8. 8.

    Allen SS, McBride CM, Pirie PL. The shortened premenstrual assessment form. J Reprod Med. 1991;36:769–72.

    CAS  PubMed  Google Scholar 

  9. 9.

    O’Brien PMS, Bäckström T, Brown C, Dennerstein L, Endicott J, Epperson CN, et al. Towards a consensus on diagnostic criteria, measurement and trial design of the premenstrual disorders: the ISPMD Montreal consensus. Arch Womens Ment Health. 2011;14:13–21.

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    ACOG: ACOG Practice Bulletin. Premenstrual syndrome. Clinical management guidelines for obsetrician-gynecologists. Int J Obstet Gynecol. 2001;73:183–91.

    Article  Google Scholar 

  11. 11.

    WHO WHO. The ICD-1 classification of mental, behavioral and developmental disorders. 10th revision (2nd ed.). Geneva, Switzerland; 2004.

  12. 12.

    Smith SS, Ruderman Y, Frye C, Homanics G, Yuan M. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder. Psychopharmacology (Berl). 2006;186:323–33.

    CAS  Article  Google Scholar 

  13. 13.

    Li Y, Pehrson AL, Budac DP, Sánchez C, Gulinello M. A rodent model of premenstrual dysphoria: progesterone withdrawal induces depression-like behavior that is differentially sensitive to classes of antidepressants. Behav Brain Res. 2012;234:238–47.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Schneider T, Popik P. An animal model of premenstrual dysphoric disorder sensitive to antidepressants. Curr Protoc Neurosci. 2009; Chapter 9:Unit 9.31

  15. 15.

    Bäckström T, Haage D, Löfgren M, Johansson IM, Strömberg J, Nyberg S, et al. Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience. 2011;191:46–54.

    PubMed  Article  CAS  Google Scholar 

  16. 16.••

    Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. 2014;113:79–87. Review article summarizing the importance of allopregnanolone in emotion regulation, potential for therapeutic use in depression and anxiety via GABAergic mechanisms, enhancement of neurogenesis, myelination, neuroprotection, and regulatory effects on HPA axis.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Nelson M, Pinna G. S-norfluoxetine microinfused into the basolateral amygdala increases allopregnanolone levels and reduces aggression in socially isolated mice. Neuropharmacology. 2011;60:1154–9.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. 18.

    Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen’s effects on executive functions in the menopause transition. Hum Brain Mapp. 2014;35:847–65.

    PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Kugaya A, Epperson CN, Zoghbi S, van Dyck CH, Hou Y, Fujita M, et al. Increase in prefrontal cortex serotonin 2A receptors following estrogen treatment in postmenopausal women. Am J Psychiatry. 2003;160:1522–4.

    PubMed  Article  Google Scholar 

  20. 20.

    Fink G, Sumner BE, McQueen JK, Wilson H, Rosie R. Sex steroid control of mood, mental state and memory. Clin Exp Pharmacol Physiol. 1998;25:764–75.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rehavi M, Goldin M, Roz N, Weizman A. Regulation of rat brain vesicular monoamine transporter by chronic treatment with ovarian hormones. Brain Res Mol Brain Res. 1998;57:31–7.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    McQueen JK, Wilson H, Fink G. Estradiol-17 beta increases serotonin transporter (SERT) mRNA levels and the density of SERT-binding sites in female rat brain. Brain Res Mol Brain Res. 1997;45:13–23.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Bertrand PP, Paranavitane UT, Chavez C, Gogos A, Jones M, van den Buuse M. The effect of low estrogen state on serotonin transporter function in mouse hippocampus: a behavioral and electrochemical study. Brain Res. 2005;1064:10–20.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Gundlah C, Lu NZ, Bethea CL. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology (Berlin). 2002;160:271–82.

    CAS  Article  Google Scholar 

  25. 25.

    Schendzielorz N, Rysa A, Reenila I, Raasmaja A, Mannisto PT. Complex estrogenic regulation of catechol-O-methyltransferase (COMT) in rats. J Physiol Pharmacol. 2011;62:483–90.

    CAS  PubMed  Google Scholar 

  26. 26.

    Aguirre CC, Baudry M. Progesterone reverses 17beta-estradiol-mediated neuroprotection and BDNF induction in cultured hippocampal slices. Eur J Neurosci. 2009;29:447–54.

    PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Bimonte-Nelson HA, Nelson ME, Granholm A-CE. Progesterone counteracts estrogen-induced increases in neurotrophins in the aged female rat brain. Neuroreport. 2004;15:2659–63.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Rapkin AJ, Edelmuth E, Chang LC, Reading AE, McGuire MT, Su TP. Whole-blood serotonin in premenstrual syndrome. Obstet Gynecol. 1987;70:533–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    Rasgon N, McGuire M, Tanavoli S, Fairbanks L, Rapkin A. Neuroendocrine response to an intravenous L-tryptophan challenge in women with premenstrual syndrome. Fertil Steril. 2000;73:144–9.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Menkes DB, Coates DC, Fawcett JP. Acute tryptophan depletion aggravates premenstrual syndrome. J Affect Disord. 1994;32:37–44.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Huo L, Straub RE, Roca C, Schmidt PJ, Shi K, Vakkalanka R, et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry. 2007;62:925–33.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Dhingra V, Magnay JL, O’Brien PMS, Chapman G, Fryer AA, Ismail KMK. Serotonin receptor 1A C(-1019)G polymorphism associated with premenstrual dysphoric disorder. Obstet Gynecol. 2007;110:788–92.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Gingnell M, Comasco E, Oreland L, Fredrikson M, Sundström-Poromaa I. Neuroticism-related personality traits are related to symptom severity in patients with premenstrual dysphoric disorder and to the serotonin transporter gene-linked polymorphism 5-HTTPLPR. Arch Womens Ment Health. 2010;13:417–23.

    PubMed Central  PubMed  Article  Google Scholar 

  34. 34.

    Magnay JL, El-Shourbagy M, Fryer AA, O’Brien S, Ismail KMK. Analysis of the serotonin transporter promoter rs25531 polymorphism in premenstrual dysphoric disorder. Am J Obstet Gynecol. 2010;203:181. e1–5.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Gray JD, Milner TA, McEwen BS. Dynamic plasticity: the role of glucocorticoids, brain-derived neurotrophic factor and other trophic factors. Neuroscience. 2013;239:214–27.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Colle R, Gressier F, Verstuyft C, Deflesselle E, Lépine J-P, Ferreri F, et al. Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J Affect Disord. 2015;175:233–40.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–18.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Elfving B, Buttenschøn HN, Foldager L, Poulsen PHP, Andersen JH, Grynderup MB, et al. Depression, the Val66Met polymorphism, age, and gender influence the serum BDNF level. J Psychiatr Res. 2012;46:1118–25.

    PubMed  Article  Google Scholar 

  39. 39.

    Carbone DL, Handa RJ. Sex and stress hormone influences on the expression and activity of brain-derived neurotrophic factor. Neuroscience. 2013;239:295–303.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  40. 40.

    Pilar-Cuéllar F, Vidal R, Pazos A. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects. Br J Pharmacol. 2012;165:1046–57.

    PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Deuschle M, Gilles M, Scharnholz B, Lederbogen F, Lang UE, Hellweg R. Changes of serum concentrations of brain-derived neurotrophic factor (BDNF) during treatment with venlafaxine and mirtazapine: role of medication and response to treatment. Pharmacopsychiatry. 2013;46:54–8.

    CAS  PubMed  Google Scholar 

  42. 42.••

    Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Hum Brain Mapp. 2014;35:4450–8. PMDD women with the BDNF Val66Met Met allele had lower fronto-cingulate cortex activation during the luteal phase compared to female controls with the Met allele.

    PubMed  Article  Google Scholar 

  43. 43.

    Oral E, Kirkan TS, Yildirim A, Kotan Z, Cansever Z, Ozcan H, et al. Serum brain-derived neurotrophic factor differences between the luteal and follicular phases in premenstrual dysphoric disorder. Gen Hosp Psychiatry. 2015;37:266–72.

    PubMed  Article  Google Scholar 

  44. 44.

    Cubeddu A, Bucci F, Giannini A, Russo M, Daino D, Russo N, et al. Brain-derived neurotrophic factor plasma variation during the different phases of the menstrual cycle in women with premenstrual syndrome. Psychoneuroendocrinology. 2011;36:523–30.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Pilver CE, Levy BR, Libby DJ, Desai RA. Posttraumatic stress disorder and trauma characteristics are correlates of premenstrual dysphoric disorder. Arch Womens Ment Health. 2011;14:383–93.

    PubMed Central  PubMed  Article  Google Scholar 

  46. 46.••

    Bertone-Johnson ER, Whitcomb BW, Missmer SA, Manson JE, Hankinson SE, Rich-Edwards JW. Early life emotional, physical, and sexual abuse and the development of premenstrual syndrome: a longitudinal study. J Womens Health (Larchmt). 2014;23:729–39. History of emotional and physical abuse were strongly correlated with moderate to severe PMS.

    Article  Google Scholar 

  47. 47.

    Segebladh B, Bannbers E, Kask K, Nyberg S, Bixo M, Heimer G, et al. Prevalence of violence exposure in women with premenstrual dysphoric disorder in comparison with other gynecological patients and asymptomatic controls. Acta Obstet Gynecol Scand. 2011;90:746–52.

    PubMed  Article  Google Scholar 

  48. 48.

    Klatzkin RR, Morrow AL, Light KC, Pedersen CA, Girdler SS. Associations of histories of depression and PMDD diagnosis with allopregnanolone concentrations following the oral administration of micronized progesterone. Psychoneuroendocrinology. 2006;31:1208–19.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Crowley SK, Girdler SS. Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl). 2014;231:3619–34.

    CAS  Article  Google Scholar 

  50. 50.

    Girdler SS, Straneva PA, Light KC, Pedersen CA, Morrow AL. Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry. 2001;49:788–97.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Serra M, Sanna E, Mostallino MC, Biggio G. Social isolation stress and neuroactive steroids. Eur Neuropsychopharmacol. 2007;17:1–11.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. 2012;63:1315–26.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Porcu P, O’Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, et al. Simultaneous quantification of GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in human and rat serum. Steroids. 2009;74:463–73.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  54. 54.•

    Wium-Andersen MK, Orsted DD, Nielsen SF, Nordestgaard BG. Elevated C-reactive protein levels, psychological distress, and depression in 73, 131 individuals. JAMA Psychiatry. 2013;70:176–84. Large-scale study that found elevated CRP was associated with increased risk for depression in the general population.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    O’Brien SM, Fitzgerald P, Scully P, Landers A, Scott LV, Dinan TG. Impact of gender and menstrual cycle phase on plasma cytokine concentrations. Neuroimmunomodulation. 2007;14:84–90.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Northoff H, Symons S, Zieker D, Schaible EV, Schäfer K, Thoma S, et al. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev. 2008;14:86–103.

    PubMed  Google Scholar 

  57. 57.

    Gaskins AJ, Wilchesky M, Mumford SL, Whitcomb BW, Browne RW, Wactawski-Wende J, et al. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: the BioCycle study. Am J Epidemiol. 2012;175:423–31.

    PubMed Central  PubMed  Article  Google Scholar 

  58. 58.

    Wander K, Brindle E, O’Connor KA. C-reactive protein across the menstrual cycle. Am J Phys Anthropol. 2008;136:138–46.

    PubMed  Article  Google Scholar 

  59. 59.

    Puder JJ, Blum CA, Mueller B, De Geyter C, Dye L, Keller U. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Investig. 2006;36:58–64.

    CAS  Article  Google Scholar 

  60. 60.

    Jane Z-Y, Chang C-C, Lin H-K, Liu Y-C, Chen W-L. The association between the exacerbation of irritable bowel syndrome and menstrual symptoms in young Taiwanese women. Gastroenterol Nurs. 2011;34:277–86.

    PubMed  Article  Google Scholar 

  61. 61.

    Kane SV, Sable K, Hanauer SB. The menstrual cycle and its effect on inflammatory bowel disease and irritable bowel syndrome: a prevalence study. Am J Gastroenterol. 1998;93:1867–72.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Shourie V, Dwarakanath CD, Prashanth GV, Alampalli RV, Padmanabhan S, Bali S. The effect of menstrual cycle on periodontal health—a clinical and microbiological study. Oral Health Prev Dent. 2012;10:185–92.

    PubMed  Google Scholar 

  63. 63.

    Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, et al. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod. 2014;29:1987–94.

    CAS  PubMed  Article  Google Scholar 

  64. 64.•

    Berman SM, London ED, Morgan M, Rapkin AJ. Elevated gray matter volume of the emotional cerebellum in women with premenstrual dysphoric disorder. J Affect Disord. 2013;146:266–71. Women with PMDD had greater gray matter volume in the posterior cerebellum compared with controls.

    PubMed Central  PubMed  Article  Google Scholar 

  65. 65.

    Jeong H-G, Ham B-J, Yeo HB, Jung I-K, Joe S-H. Gray matter abnormalities in patients with premenstrual dysphoric disorder: an optimized voxel-based morphometry. J Affect Disord. 2012;140:260–7.

    PubMed  Article  Google Scholar 

  66. 66.••

    Ossewaarde L, van Wingen GA, Rijpkema M, Bäckström T, Hermans EJ, Fernández G. Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Hum Brain Mapp. 2013;34:1187–93. Among non-PMDD women, gray matter volume in the dorsal left amygdala increased during the luteal phase compared with the follicular phase; this volume increase positively correlated with stress-induced negative affect.

    PubMed  Article  Google Scholar 

  67. 67.

    Protopopescu X, Tuescher O, Pan H, Epstein J, Root J, Chang L, et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord. 2008;108:87–94.

    PubMed  Article  Google Scholar 

  68. 68.

    Gingnell M, Morell A, Bannbers E, Wikström J, Sundström Poromaa I. Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Horm Behav. 2012;62:400–6.

    PubMed  Article  Google Scholar 

  69. 69.

    Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, et al. Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2002;59:851–8.

    CAS  PubMed  Article  Google Scholar 

  70. 70.••

    Liu B, Wang G, Gao D, Gao F, Zhao B, Qiao M, et al. Alterations of GABA and glutamate-glutamine levels in premenstrual dysphoric disorder: a 3T proton magnetic resonance spectroscopy study. Psychiatry Res. 2015;231:64–70. Significantly lower GABA concentrations in the anterior cingulate cortex, medial prefrontal cortex and left basal ganglia of women with PMDD.

    PubMed  Article  Google Scholar 

  71. 71.••

    Gingnell M, Bannbers E, Wikström J, Fredrikson M, Sundström-Poromaa I. Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli. Eur Neuropsychopharmacol. 2013;23:1474–83. PMDD women showed enhanced dorsolateral prefrontal cortex reactivity during the anticipation of negative stimuli during the luteal phase, which was positively correlated with progesterone levels.

    CAS  PubMed  Article  Google Scholar 

  72. 72.••

    Baller EB, Wei S-M, Kohn PD, Rubinow DR, Alarcón G, Schmidt PJ, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry. 2013;170:305–14. PMDD patients showed greater dorsolateral prefrontal cortex activation than control subjects, which may represent a risk factor for PMDD.

    PubMed Central  PubMed  Article  Google Scholar 

  73. 73.

    Epperson C, Pittman B, Czarkowski KA, Stiklus S, Krystal JH, Grillon C. Luteal-phase accentuation of acoustic startle response in women with premenstrual dysphoric disorder. Neuropsychopharmacology. 2007;32:2190–8.

    PubMed Central  PubMed  Article  Google Scholar 

  74. 74.

    Kask K, Gulinello M, Bäckström T, Geyer MA, Sundström-Poromaa I. Patients with premenstrual dysphoric disorder have increased startle response across both cycle phases and lower levels of prepulse inhibition during the late luteal phase of the menstrual cycle. Neuropsychopharmacology. 2008;33:2283–90.

    PubMed  Article  Google Scholar 

  75. 75.

    Huang Y, Zhou R, Wu M, Wang Q, Zhao Y. Premenstrual syndrome is associated with blunted cortisol reactivity to the TSST. Stress. 2015;1–9.

  76. 76.

    Lee EE, Nieman LK, Martinez PE, Harsh VL, Rubinow DR, Schmidt PJ. ACTH and cortisol response to Dex/CRH testing in women with and without premenstrual dysphoria during GnRH agonist-induced hypogonadism and ovarian steroid replacement. J Clin Endocrinol Metab. 2012;97:1887–96.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. 77.••

    Segebladh B, Bannbers E, Moby L, Nyberg S, Bixo M, Bäckström T, et al. Allopregnanolone serum concentrations and diurnal cortisol secretion in women with premenstrual dysphoric disorder. Arch Womens Ment Health. 2013. PMDD women with high serum levels of ALLO had blunted cortisol.

  78. 78.

    Maeng LY, Milad MR. Sex differences in anxiety disorders: interactions between fear, stress, and gonadal hormones. Horm Behav. 2015.

  79. 79.

    Brown J, O’Brien PMS, Marjoribanks J, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2009; CD001396.

  80. 80.

    Shah NR, Jones JB, Aperi J, Shemtov R, Karne A, Borenstein J. Selective serotonin reuptake inhibitors for premenstrual syndrome and premenstrual dysphoric disorder: a meta-analysis. Obstet Gynecol. 2008;111:1175–82.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. 81.••

    Marjoribanks J, Brown J, O’Brien PMS, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2013;6:CD001396. Cochrane review finding that SSRIs are effective in reducing premenstrual symptoms with luteal or continuous dosing.

    PubMed  Google Scholar 

  82. 82.

    Kleinstäuber M, Witthöft M, Hiller W. Cognitive-behavioral and pharmacological interventions for premenstrual syndrome or premenstrual dysphoric disorder: a meta-analysis. J Clin Psychol Med Settings. 2012;19:308–19.

    PubMed  Article  Google Scholar 

  83. 83.

    Halbreich U. Selective serotonin reuptake inhibitors and initial oral contraceptives for the treatment of PMDD: effective but not enough. CNS Spectr. 2008;13:566–72.

    PubMed  Article  Google Scholar 

  84. 84.

    Landén M, Thase ME. A model to explain the therapeutic effects of serotonin reuptake inhibitors: the role of 5-HT2 receptors. Psychopharmacol Bull. 2006;39:147–66.

    PubMed  Google Scholar 

  85. 85.

    Steinberg EM, Cardoso GMP, Martinez PE, Rubinow DR, Schmidt PJ. Rapid response to fluoxetine in women with premenstrual dysphoric disorder. Depress Anxiety. 2012;29:531–40.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  86. 86.

    Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A. 1999;96:13512–7.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  87. 87.

    Trauger JW, Jiang A, Stearns BA, LoGrasso PV. Kinetics of allopregnanolone formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry. 2002;41:13451–9.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Freeman EW. Luteal phase administration of agents for the treatment of premenstrual dysphoric disorder. CNS Drugs. 2004;18:453–68.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Kornstein SG, Pearlstein TB, Fayyad R, Farfel GM, Gillespie JA. Low-dose sertraline in the treatment of moderate-to-severe premenstrual syndrome: efficacy of 3 dosing strategies. J Clin Psychiatry. 2006;67:1624–32.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Landén M, Nissbrandt H, Allgulander C, Sörvik K, Ysander C, Eriksson E. Placebo-controlled trial comparing intermittent and continuous paroxetine in premenstrual dysphoric disorder. Neuropsychopharmacology. 2007;32:153–61.

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Ravindran LN, Woods S-A, Steiner M, Ravindran AV. Symptom-onset dosing with citalopram in the treatment of premenstrual dysphoric disorder (PMDD): a case series. Arch Womens Ment Health. 2007;10:125–7.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Yonkers KA, Holthausen GA, Poschman K, Howell HB. Symptom-onset treatment for women with premenstrual dysphoric disorder. J Clin Psychopharmacol. 2006;26:198–202.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Freeman EW, Sondheimer SJ, Sammel MD, Ferdousi T, Lin H. A preliminary study of luteal phase versus symptom-onset dosing with escitalopram for premenstrual dysphoric disorder. J Clin Psychiatry. 2005;66:769–73.

    PubMed  Article  Google Scholar 

  94. 94.•

    Lovick T. SSRIs and the female brain—potential for utilizing steroid-stimulating properties to treat menstrual cycle-linked dysphorias. J Psychopharmacol (Oxford). 2013;27:1180–5. Proposes steroid-stimulating properties of SSRIs offer opportunities for new treatments for menstrual cycle-linked disorders in women.

    Article  CAS  Google Scholar 

  95. 95.

    Cunningham J, Yonkers KA, O’Brien S, Eriksson E. Update on research and treatment of premenstrual dysphoric disorder. Harv Rev Psychiatry. 2009;17:120–37.

    PubMed Central  PubMed  Article  Google Scholar 

  96. 96.

    Lopez LM, Kaptein AA, Helmerhorst FM. Oral contraceptives containing drospirenone for premenstrual syndrome. Cochrane Database Syst Rev. 2012;2:CD006586.

    PubMed  Google Scholar 

  97. 97.

    Freeman EW, Halbreich U, Grubb GS, Rapkin AJ, Skouby SO, Smith L, et al. An overview of four studies of a continuous oral contraceptive (levonorgestrel 90 mcg/ethinyl estradiol 20 mcg) on premenstrual dysphoric disorder and premenstrual syndrome. Contraception. 2012;85:437–45.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Ford O, Lethaby A, Roberts H, Mol BWJ. Progesterone for premenstrual syndrome. Cochrane Database Syst Rev. 2012;3:CD003415.

    PubMed  Google Scholar 

  99. 99.

    Pincus SM, Alam S, Rubinow DR, Bhuvaneswar CG, Schmidt PJ. Predicting response to leuprolide of women with premenstrual dysphoric disorder by daily mood rating dynamics. J Psychiatr Res. 2011;45:386–94.

    PubMed Central  PubMed  Article  Google Scholar 

  100. 100.

    Freeman EW, Sondheimer SJ, Rickels K. Gonadotropin-releasing hormone agonist in the treatment of premenstrual symptoms with and without ongoing dysphoria: a controlled study. Psychopharmacol Bull. 1997;33:303–9.

    CAS  PubMed  Google Scholar 

  101. 101.

    Wyatt KM, Dimmock PW, Ismail KMK, Jones PW, O’Brien PMS. The effectiveness of GnRHa with and without “add-back” therapy in treating premenstrual syndrome: a meta analysis. BJOG. 2004;111:585–93.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Busse JW, Montori VM, Krasnik C, Patelis-Siotis I, Guyatt GH. Psychological intervention for premenstrual syndrome: a meta-analysis of randomized controlled trials. Psychother Psychosom. 2009;78:6–15.

    PubMed  Article  Google Scholar 

  103. 103.

    Lustyk MKB, Gerrish WG, Shaver S, Keys SL. Cognitive-behavioral therapy for premenstrual syndrome and premenstrual dysphoric disorder: a systematic review. Arch Womens Ment Health. 2009;12:85–96.

    PubMed  Article  Google Scholar 

  104. 104.•

    Kim DR, Hantsoo L, Thase ME, Sammel M, Epperson CN. Computer-assisted cognitive behavioral therapy for pregnant women with major depressive disorder. J Womens Health (Larchmt). 2014;23:842–8. Internet-based cognitive-behavioral therapy reduces burden on the patient in female-specific affective disorder.

    Article  Google Scholar 

  105. 105.•

    Kues JN, Janda C, Kleinstäuber M, Weise C. Internet-based cognitive behavioural self-help for premenstrual syndrome: study protocol for a randomised controlled trial. Trials. 2014;15:472. Proposed criteria for internet based CBT program for PMS/PMDD.

    PubMed Central  PubMed  Article  Google Scholar 

  106. 106.•

    Yonkers KA, Pearlstein TB, Gotman N. A pilot study to compare fluoxetine, calcium, and placebo in the treatment of premenstrual syndrome. J Clin Psychopharmacol. 2013;33:614–20. Placebo-controlled study showing calcium carbonate reduced PMS symptoms, but not to the degree of fluoxetine.

    CAS  PubMed  Article  Google Scholar 

  107. 107.•

    Sohrabi N, Kashanian M, Ghafoori SS, Malakouti SK. Evaluation of the effect of omega-3 fatty acids in the treatment of premenstrual syndrome: “a pilot trial.”. Complement Ther Med. 2013;21:141–6. A randomized double blind controlled trial showing that after 45 days of taking two grams omega-3 fatty acids daily, women with PMS showed decreased depression, anxiety, and cognitive symptoms.

    PubMed  Article  Google Scholar 

  108. 108.

    Dante G, Facchinetti F. Herbal treatments for alleviating premenstrual symptoms: a systematic review. J Psychosom Obstet Gynaecol. 2011;32:42–51.

    PubMed  Article  Google Scholar 

  109. 109.

    Daley A. Exercise and premenstrual symptomatology: a comprehensive review. J Womens Health (Larchmt). 2009;18:895–9.

    Article  Google Scholar 

  110. 110.

    Bäckström T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, et al. Allopregnanolone and mood disorders. Prog Neurobiol. 2014;113:88–94.

    PubMed  Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Liisa Hantsoo declares that she has no conflict of interest. Her current research supported by P50 MH099910.

Dr. Epperson has received grant funding from Shire Plc, has been a consultant for Forest Laboratories, and has personal investments in Pfizer, Johnson & Johnson, Merck, Abbott and Abbvie. Current research supported by P50 MH099910.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liisa Hantsoo.

Additional information

This article is part of the Topical Collection on Women’s Mental Health

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hantsoo, L., Epperson, C.N. Premenstrual Dysphoric Disorder: Epidemiology and Treatment. Curr Psychiatry Rep 17, 87 (2015). https://doi.org/10.1007/s11920-015-0628-3

Download citation

Keywords

  • Premenstrual
  • Menstrual cycle
  • PMS
  • PMDD
  • GABA