Rehbein F, Mossle T, Arnaud N, Rumpf HJ. Video game and internet addiction. The current state of research. Nervenarzt. 2013;84(5):569–75.
CAS
Article
PubMed
Google Scholar
Murray JP, Biggins B, Donnerstein E, Menninger RW, Rich M, Strasburger V. A plea for concern regarding violent video games. Mayo Clin Proc. 2011;86(8):818–20.
PubMed Central
Article
PubMed
Google Scholar
Haninger K, Thompson KM. Content and ratings of teen-rated video games. JAMA. 2004;291(7):856–65.
CAS
Article
PubMed
Google Scholar
Bavelier D, Green CS, Dye MW. Children, wired: for better and for worse. Neuron. 2010;67(5):692–701.
PubMed Central
CAS
Article
PubMed
Google Scholar
CBC News. Not a game: fighting misogyny in the world of video games. In: George Stroumboulopoulos Tonight. CBC.ca. 2012. http://www.cbc.ca/strombo/news/not-a-game-fighting-misogyny-in-the-world-of-video-games.html. Accessed Aug 18 2014.
Wagner JS. Addiction to video games a growing concern. In: U.S. News: Health. usnews.com. 2008. http://health.usnews.com/health-news/articles/2008/05/07/addiction-to-video-games-a-growing-concern?page=2. Accessed Aug 18 2014.
Steinberg S. Kids and video games: are you a concerned parent? ABC news. 2012. http://abcnews.go.com/blogs/technology/2012/01/kids-and-video-games-are-you-a-concerned-parent/. Accessed Aug 18 2014.
Chang YJ, Han WY, Tsai YC. A Kinect-based upper limb rehabilitation system to assist people with cerebral palsy. Res Dev Disabil. 2013;34(11):3654–9.
Article
PubMed
Google Scholar
Gutierrez RO, Galan Del Rio F, Cano de la Cuerda R, Alguacil Diego IM, Gonzalez RA, Page JC. A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation. 2013;33(4):545–54.
PubMed
Google Scholar
Herz NB, Mehta SH, Sethi KD, Jackson P, Hall P, Morgan JC. Nintendo Wii rehabilitation (“Wii-hab”) provides benefits in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(11):1039–42.
Article
PubMed
Google Scholar
Luna-Oliva L, Ortiz-Gutierrez RM, Cano-de la Cuerda R, Piedrola RM, Alguacil-Diego IM, Sanchez-Camarero C, et al. Kinect Xbox 360 as a therapeutic modality for children with cerebral palsy in a school environment: a preliminary study. NeuroRehabilitation. 2013;33(4):513–21.
PubMed
Google Scholar
King DL, Gradisar M, Drummond A, Lovato N, Wessel J, Micic G, et al. The impact of prolonged violent video-gaming on adolescent sleep: an experimental study. J Sleep Res. 2013;22(2):137–43.
Article
PubMed
Google Scholar
Montag C, Weber B, Trautner P, Newport B, Markett S, Walter NT, et al. Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli? Biol Psychol. 2012;89(1):107–11.
Article
PubMed
Google Scholar
Ybarra ML, Huesmann LR, Korchmaros JD, Reisner SL. Cross-sectional associations between violent video and computer game playing and weapon carrying in a national cohort of children. Aggress Behav. 2014.
Vingilis E, Seeley J, Wiesenthal DL, Wickens CM, Fischer P, Mann RE. Street racing video games and risk-taking driving: an Internet survey of automobile enthusiasts. Accid Anal Prev. 2013;50:1–7.
Article
PubMed
Google Scholar
Ganesh S, van Schie HT, de Lange FP, Thompson E, Wigboldus DH. How the human brain goes virtual: distinct cortical regions of the person-processing network are involved in self-identification with virtual agents. Cereb Cortex. 2012;22(7):1577–85.
Article
PubMed
Google Scholar
Desai RA, Krishnan-Sarin S, Cavallo D, Potenza MN. Video-gaming among high school students: health correlates, gender differences, and problematic gaming. Pediatrics. 2010;126(6):e1414–24.
PubMed Central
Article
PubMed
Google Scholar
Simons M, de Vet E, Brug J, Seidell J, Chinapaw MJ. Active and non-active video gaming among Dutch adolescents: who plays and how much? J Sci Med Sport. 2013.
Fuster H, Carbonell X, Chamarro A, Oberst U. Interaction with the game and motivation among players of massively multiplayer online role-playing games. Span J Psychol. 2013;16:e43.
Article
PubMed
Google Scholar
Griffiths MD, Davies MN, Chappell D. Breaking the stereotype: the case of online gaming. Cyberpsychol Behav. 2003;6(1):81–91.
Article
PubMed
Google Scholar
Yee N. The demographics, motivations and derived experiences of users of massively-multiuser online graphical environments. Presence. 2006;15(3):309–29.
Article
Google Scholar
Crowder SA, Merritte K. The possible therapeutic benefits of utilizing motion gaming systems on pediatric patients presenting autism. Tenn Med. 2013;106(8):41–3. This paper describes how video game training can aid in the improvement of memory, facial recognition, motor skills, and social integration in children with autism.
PubMed
Google Scholar
da Silva CM, Bermudez IBS, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98.
Google Scholar
Gil-Gomez JA, Llorens R, Alcaniz M, Colomer C. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil. 2011;8:30.
PubMed Central
Article
PubMed
Google Scholar
Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2011;9:CD008349.
PubMed
Google Scholar
Ustinova KI, Leonard WA, Cassavaugh ND, Ingersoll CD. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI. J Neuroeng Rehabil. 2011;8:61.
PubMed Central
Article
PubMed
Google Scholar
Levac D, Miller P, Missiuna C. Usual and virtual reality video game-based physiotherapy for children and youth with acquired brain injuries. Phys Occup Ther Pediatr. 2012;32(2):180–95.
Article
PubMed
Google Scholar
Beasley N, Sharma S, Shegog R, Huber R, Abernathy P, Smith C, et al. The quest to Lava Mountain: using video games for dietary change in children. J Acad Nutr Diet. 2012;112(9):1334–6.
Article
PubMed
Google Scholar
Jovancevic J, Rosano C, Perera S, Erickson KI, Studenski S. A protocol for a randomized clinical trial of interactive video dance: potential for effects on cognitive function. BMC Geriatr. 2012;12:23.
PubMed Central
Article
PubMed
Google Scholar
Zickefoose S, Hux K, Brown J, Wulf K. Let the games begin: a preliminary study using attention process training-3 and Lumosity brain games to remediate attention deficits following traumatic brain injury. Brain Inj. 2013;27(6):707–16.
Article
PubMed
Google Scholar
McDougall S, House B. Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(1–2):195–221.
Article
PubMed
Google Scholar
Chang CH, Pan WW, Chen FC, Stoffregen TA. Console video games, postural activity, and motion sickness during passive restraint. Exp Brain Res. 2013;229(2):235–42.
Article
PubMed
Google Scholar
dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, Modenesi Lobo A, Guedes da Silva K, Oliveira Tde P, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson’s disease—effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98(3):217–23.
Article
PubMed
Google Scholar
Hosokawa T, Watanabe M. Prefrontal neurons represent winning and losing during competitive video shooting games between monkeys. J Neurosci. 2012;32(22):7662–71.
CAS
Article
PubMed
Google Scholar
Hsu BW, Wang MJ. Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue. Percept Mot Skills. 2013;116(1):235–52.
Article
PubMed
Google Scholar
Hughes MG, Day EA, Wang X, Schuelke MJ, Arsenault ML, Harkrider LN, et al. Learner-controlled practice difficulty in the training of a complex task: cognitive and motivational mechanisms. J Appl Psychol. 2013;98(1):80–98.
Article
PubMed
Google Scholar
Karim H, Schmidt B, Dart D, Beluk N, Huppert T. Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture. 2012;35(3):367–72.
PubMed Central
Article
PubMed
Google Scholar
Los SA, Hoorn JF, Grin M, Van der Burg E. The time course of temporal preparation in an applied setting: a study of gaming behavior. Acta Psychol (Amst). 2013;144(3):499–505.
Article
Google Scholar
Pichierri G, Murer K, de Bruin ED. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial. BMC Geriatr. 2012;12:74.
PubMed Central
Article
PubMed
Google Scholar
Tallal P. Fast ForWord(R): the birth of the neurocognitive training revolution. Prog Brain Res. 2013;207:175–207.
Article
PubMed
Google Scholar
Zhou Z, Yuan G, Yao J. Cognitive biases toward Internet game-related pictures and executive deficits in individuals with an Internet game addiction. PLoS One. 2012;7(11):e48961.
PubMed Central
CAS
Article
PubMed
Google Scholar
Mané AM, Donchin E. The Space Fortress Game. Acta Psychol. 1989;71:17–22.
Article
Google Scholar
Basak C, Voss MW, Erickson KI, Boot WR, Kramer AF. Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain Cogn. 2011;76(3):407–14.
Article
PubMed
Google Scholar
Hofstetter S, Tavor I, Tzur Moryosef S, Assaf Y. Short-term learning induces white matter plasticity in the fornix. J Neurosci. 2013;33(31):12844–50.
CAS
Article
PubMed
Google Scholar
Kuhn S, Gleich T, Lorenz RC, Lindenberger U, Gallinat J. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol Psychiatry. 2014;19(2):265–71. This paper found that increases in gray matter volume can be induced by video game play. This might be of clinical relevance since many neuropsychiatric disorders are associated with reduced hippocampal volume including depression, post-traumatic stress disorder, schizophrenia, bipolar disorder, and some types of dementia.
CAS
Article
PubMed
Google Scholar
Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97(8):4398–403.
PubMed Central
CAS
Article
PubMed
Google Scholar
Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci. 2003;23(13):5945–52.
CAS
PubMed
Google Scholar
Anderson JR, Bothell D, Fincham JM, Anderson AR, Poole B, Qin Y. Brain regions engaged by part- and whole-task performance in a video game: a model-based test of the decomposition hypothesis. J Cogn Neurosci. 2011;23(12):3983–97.
PubMed Central
Article
PubMed
Google Scholar
Lee H, Voss MW, Prakash RS, Boot WR, Vo LT, Basak C, et al. Videogame training strategy-induced change in brain function during a complex visuomotor task. Behav Brain Res. 2012;232(2):348–57.
Article
PubMed
Google Scholar
Voss MW, Prakash RS, Erickson KI, Boot WR, Basak C, Neider MB, et al. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. Neuroimage. 2012;59(1):138–48.
Article
PubMed
Google Scholar
Nikolaidis A, Voss MW, Lee H, Vo LT, Kramer AF. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front Hum Neurosci. 2014;8:169. This paper provided the first evidence that task-dependent brain network activation could be altered by virtual training.
PubMed Central
Article
PubMed
Google Scholar
Chou YH, Yang BH, Hsu JW, Wang SJ, Lin CL, Huang KL, et al. Effects of video game playing on cerebral blood flow in young adults: a SPECT study. Psychiatry Res. 2013;212(1):65–72.
Article
PubMed
Google Scholar
Kuhn S, Romanowski A, Schilling C, Lorenz R, Morsen C, Seiferth N, et al. The neural basis of video gaming. Transl Psychiatry. 2011;1:e53.
PubMed Central
CAS
Article
PubMed
Google Scholar
Han DH, Lyoo IK, Renshaw PF. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J Psychiatr Res. 2012;46(4):507–15.
Article
PubMed
Google Scholar
Kuhn S, Gallinat J. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol Psychiatry. 2013;19(7):842–7.
Article
PubMed
Google Scholar
Tanaka S, Ikeda H, Kasahara K, Kato R, Tsubomi H, Sugawara SK, et al. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study. PLoS One. 2013;8(6):e66998.
PubMed Central
CAS
Article
PubMed
Google Scholar
Bavelier D, Achtman RL, Mani M, Focker J. Neural bases of selective attention in action video game players. Vision Res. 2012;61:132–43.
PubMed Central
CAS
Article
PubMed
Google Scholar
Lorenz RC, Kruger JK, Neumann B, Schott BH, Kaufmann C, Heinz A, et al. Cue reactivity and its inhibition in pathological computer game players. Addict Biol. 2013;18(1):134–46.
Article
PubMed
Google Scholar
West GL, Al-Aidroos N, Pratt J. Action video game experience affects oculomotor performance. Acta Psychol (Amst). 2013;142(1):38–42.
Article
Google Scholar
Peretz C, Korczyn AD, Shatil E, Aharonson V, Birnboim S, Giladi N. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology. 2011;36(2):91–9.
Article
PubMed
Google Scholar
Stern Y, Blumen HM, Rich LW, Richards A, Herzberg G, Gopher D. Space Fortress game training and executive control in older adults: a pilot intervention. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011;18(6):653–77.
PubMed Central
Article
PubMed
Google Scholar
Mackey AP, Hill SS, Stone SI, Bunge SA. Differential effects of reasoning and speed training in children. Dev Sci. 2011;14(3):582–90.
Article
PubMed
Google Scholar
de Kloet AJ, Berger MA, Verhoeven IM, van Stein CK, Vlieland TP. Gaming supports youth with acquired brain injury? A pilot study. Brain Inj. 2012;26(7–8):1021–9.
Article
PubMed
Google Scholar
Best JR. Exergaming immediately enhances children’s executive function. Dev Psychol. 2012;48(5):1501–10.
Article
PubMed
Google Scholar
Maillot P, Perrot A, Hartley A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol Aging. 2012;27(3):589–600.
Article
PubMed
Google Scholar
Sanchez CA. Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychon Bull Rev. 2012;19(1):58–65.
Article
PubMed
Google Scholar
Nouchi R, Taki Y, Takeuchi H, Hashizume H, Akitsuki Y, Shigemune Y, et al. Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. PLoS One. 2012;7(1):e29676. Working memory, executive functioning, and processing speed have all shown improvement with the use of various genres of games for 4 weeks in older adults.
PubMed Central
CAS
Article
PubMed
Google Scholar
Nouchi R, Taki Y, Takeuchi H, Hashizume H, Nozawa T, Kambara T, et al. Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial. PLoS One. 2013;8(2):e55518.
PubMed Central
CAS
Article
PubMed
Google Scholar
Glass BD, Maddox WT, Love BC. Real-time strategy game training: emergence of a cognitive flexibility trait. PLoS One. 2013;8(8):e70350.
PubMed Central
CAS
Article
PubMed
Google Scholar
Oei AC, Patterson MD. Enhancing cognition with video games: a multiple game training study. PLoS One. 2013;8(3):e58546.
PubMed Central
CAS
Article
PubMed
Google Scholar
Baniqued PL, Lee H, Voss MW, Basak C, Cosman JD, Desouza S, et al. Selling points: what cognitive abilities are tapped by casual video games? Acta Psychol (Amst). 2013;142(1):74–86.
PubMed Central
Article
Google Scholar
Baniqued PL, Kranz MB, Voss MW, Lee H, Cosman JD, Severson J, et al. Cognitive training with casual video games: points to consider. Front Psychol. 2014;4:1010.
PubMed Central
Article
PubMed
Google Scholar
Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, et al. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am J Psychiatry. 2014;171(6):640–8.
PubMed Central
Article
PubMed
Google Scholar
Gerardi M, Rothbaum BO, Ressler K, Heekin M, Rizzo A. Virtual reality exposure therapy using a virtual Iraq: case report. J Trauma Stress. 2008;21(2):209–13.
PubMed Central
Article
PubMed
Google Scholar
Sorkin A, Weinshall D, Modai I, Peled A. Improving the accuracy of the diagnosis of schizophrenia by means of virtual reality. Am J Psychiatry. 2006;163(3):512–20. This paper reports the use of a virtual reality maze as an objective tool to diagnose schizophrenia.
Article
PubMed
Google Scholar
Han DH, Renshaw PF, Sim ME, Kim JI, Arenella LS, Lyoo IK. The effect of internet video game play on clinical and extrapyramidal symptoms in patients with schizophrenia. Schizophr Res. 2008;103(1–3):338–40.
Article
PubMed
Google Scholar
Zawadzki JA, Girard TA, Foussias G, Rodrigues A, Siddiqui I, Lerch JP, et al. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation. Front Behav Neurosci. 2013;7:180. This paper reports the utility of using a single-trial navigation task in a virtual city to measure cognition in patients with schizophrenia.
PubMed Central
Article
PubMed
Google Scholar
Fernandez-Aranda F, Jimenez-Murcia S, Santamaria JJ, Gunnard K, Soto A, Kalapanidas E, et al. Video games as a complementary therapy tool in mental disorders: PlayMancer, a European multicentre study. J Ment Health. 2012;21(4):364–74. Clinical implementation of a specialized video game can be used to aid remediation in psychiatric patients with impulse-control disorders.
PubMed Central
Article
PubMed
Google Scholar
Claes L, Jimenez-Murcia S, Santamaria JJ, Moussa MB, Sanchez I, Forcano L, et al. The facial and subjective emotional reaction in response to a video game designed to train emotional regulation (Playmancer). Eur Eat Disord Rev. 2012;20(6):484–9.
Article
PubMed
Google Scholar
Wilms IL, Petersen A, Vangkilde S. Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychol (Amst). 2013;142(1):108–18.
Article
Google Scholar
Rivero TS, Covre P, Reyes MB, Bueno OF. Effects of chronic video game use on time perception: differences between sub- and multi-second intervals. Cyberpsychol Behav Soc Netw. 2013;16(2):140–4.
Article
PubMed
Google Scholar
van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. The course of brain abnormalities in schizophrenia: can we slow the progression? J Psychopharmacol. 2012;26(5 Suppl):8–14. This review summarizes studies investigating the reduction in brain volume following antipsychotic exposure and highlights the need for interventional therapies.
Article
PubMed
Google Scholar
Granic I, Lobel A, Engels RC. The benefits of playing video games. Am Psychol. 2014;69(1):66–78. This review summarizes the positive motivational, emotional, and social effects of video games.
Article
PubMed
Google Scholar