Skip to main content
Log in

Use of EEG to Diagnose ADHD

  • Attention-Deficit Disorder (A Rostain, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) has, historically, played a focal role in the assessment of neural function in children with attention deficit hyperactivity disorder (ADHD). We review here the most recent developments in the utility of EEG in the diagnosis of ADHD, with emphasis on the most commonly used and emerging EEG metrics and their reliability in diagnostic classification. Considering the clinical heterogeneity of ADHD and the complexity of information available from the EEG signals, we suggest that considerable benefits are to be gained from multivariate analyses and a focus towards understanding of the neural generators of EEG. We conclude that while EEG cannot currently be used as a diagnostic tool, vast developments in analytical and technological tools in its domain anticipate future progress in its utility in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jasper HH, Solomon P, Bradley C. Electroencephalographic analyses of behavior problem children. Am J Psychiatr. 1938;95(3):641–58.

    Google Scholar 

  2. Bandettini PA. Twenty years of functional MRI: the science and the stories. Neuroimage. 2012;62(2):575–88.

    Article  PubMed  Google Scholar 

  3. Savoy RL. History and future directions of human brain mapping and functional neuroimaging. Acta Psychol (Amst). 2001;107(1–3):9–42.

    Article  CAS  Google Scholar 

  4. Weder N. Are we there yet? Electroencephalography as a diagnostic tool for attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2013;52(11):1119–20.

    Article  PubMed  Google Scholar 

  5. Cortese S, Castellanos FX. Neuroimaging of attention-deficit/hyperactivity disorder: current neuroscience-informed perspectives for clinicians. Curr Psychiatry Rep. 2012;14(5):568–78.

    Article  PubMed  Google Scholar 

  6. Loo SK, Makeig S. Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update. Neurotherapeutics. 2012;9(3):569–87.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2013;124(4):644–57. Comprehensive review of the last decade of ERP findings in ADHD.

    Article  PubMed  Google Scholar 

  8. Barry RJ, Clarke AR, Johnstone SJ. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neurophysiol. 2003;114(2):171–83.

    Article  PubMed  Google Scholar 

  9. Lubar JF. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback Self Regul. 1991;16(3):201–25.

    Article  PubMed  CAS  Google Scholar 

  10. Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol. 2006;23(5):440–55.

    Article  PubMed  Google Scholar 

  11. Boutros N, Fraenkel L, Feingold A. A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case. J Neuropsychiatry Clin Neurosci. 2005;17(4):455–64.

    Article  PubMed  Google Scholar 

  12. Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17(5):374–83. Key meta-analysis that showed inconsistency of theta/beta ratio in distinguishing between ADHD and controls and highlighted that this metric decreased linearly with year of pulication.

    Article  PubMed  Google Scholar 

  13. Quintana H, Snyder SM, Purnell W, Aponte C, Sita J. Comparison of a standard psychiatric evaluation to rating scales and EEG in the differential diagnosis of attention-deficit/hyperactivity disorder. Psychiatry Res. 2007;152(2–3):211–22.

    Article  PubMed  Google Scholar 

  14. Monastra VJ, Lubar JF, Linden M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: reliability and validity studies. Neuropsychology. 2001;15(1):136–44.

    Article  PubMed  CAS  Google Scholar 

  15. Snyder SM, Quintana H, Sexson SB, Knott P, et al. Blinded, multi-center validation of EEG and rating scales in identifying ADHD within a clinical sample. Psychiatry Res. 2008;159(3):346–58.

    Article  PubMed  Google Scholar 

  16. Mann CA, Lubar JF, Zimmerman AW, Miller CA, Muenchen RA. Quantitative-analysis of Eeg in boys with attention-deficit-hyperactivity disorder - controlled-study with clinical implications. Pediatr Neurol. 1992;8(1):30–6.

    Article  PubMed  CAS  Google Scholar 

  17. Satterfield JH, Dawson ME. Electrodermal correlates of hyperactivity in children. Psychophysiology. 1971;8(2):191–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ogrim G, Kropotov J, Hestad K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: sensitivity, specificity, and behavioral correlates. Psychiatry Res. 2012;198(3):482–8.

    Article  PubMed  Google Scholar 

  19. van Dongen-Boomsma M, Lansbergen MM, Bekker EM, Kooij JJ, et al. Relation between resting EEG to cognitive performance and clinical symptoms in adults with attention-deficit/hyperactivity disorder. Neurosci Lett. 2010;469(1):102–6.

    Article  PubMed  Google Scholar 

  20. Loo SK, Hale TS, Macion J, Hanada G, et al. Cortical activity patterns in ADHD during arousal, activation and sustained attention. Neuropsychologia. 2009;47(10):2114–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buyck I, Wiersema JR. Resting electroencephalogram in attention deficit hyperactivity disorder: developmental course and diagnostic value. Psychiatry Res. 2014;216(3):391–7.

    Article  PubMed  Google Scholar 

  22. Liechti MD, Valko L, Muller UC, Dohnert M, et al. Diagnostic value of resting electroencephalogram in attention-deficit/hyperactivity disorder across the lifespan. Brain Topogr. 2013;26(1):135–51.

    Article  PubMed  Google Scholar 

  23. Loo SK, Cho A, Hale TS, McGough J, et al. Characterization of the theta to beta ratio in ADHD: identifying potential sources of heterogeneity. J Atten Disord. 2013;17(5):384–92. One of the largerst studies of theta/beta ratio to date, including 871 participants – 595 youth and 276 adults – and reporting diagnostic inconsistency of theta/beta ratio.

  24. Clarke AR, Barry RJ, Dupuy FE, McCarthy R, et al. Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: a disorder of arousal? Int J Psychophysiol. 2013. doi:10.1016/j.ijpsycho.2013.04.009.

    Google Scholar 

  25. Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M. Electroencephalogram theta/beta ratio and arousal in attention-deficit/hyperactivity disorder: evidence of independent processes. Biol Psychiatry. 2009;66(4):398–401.

    Article  PubMed  Google Scholar 

  26. Barry RJ, Clarke AR, McCarthy R, Selikowitz M, et al. EEG differences in children as a function of resting-state arousal level. Clin Neurophysiol. 2004;115(2):402–8.

    Article  PubMed  Google Scholar 

  27. Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol. 2007;118(12):2765–73.

    Article  PubMed  Google Scholar 

  28. Nazari MA, Wallois F, Aarabi A, Berquin P. Dynamic changes in quantitative electroencephalogram during continuous performance test in children with attention-deficit/hyperactivity disorder. International Journal of Pyschophysiology. 2011;81:230–236.

  29. Williams LM, Hermens DF, Thein T, Clark CR, Cooper NJ, Clarke SD, Lamb C, Gordon E, Kohn MR. Using brain-based cognitive measures to support clinical decisions in ADHD. Pediatr Neurol. 2010;42(2):118–126.

  30. Smith JL, Johnstone SJ, Barry RJ. Aiding diagnosis of attention-deficit/hyperactivity disorder and its subtypes: discriminant function analysis of event-related potential data. J Child Psychol Psychiatry. 2003;44(7):1067–75.

    Article  PubMed  Google Scholar 

  31. Szuromi B, Czobor P, Komlosi S, Bitter I. P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis. Psychol Med. 2011;41(7):1529–38.

    Article  PubMed  CAS  Google Scholar 

  32. Polich J, Kok A. Cognitive and biological determinants of P300 - an integrative review. Biol Psychol. 1995;41(2):103–46.

    Article  PubMed  CAS  Google Scholar 

  33. Polich J. Updating p300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mueller A, Candrian G, Grane VA, Kropotov JD, et al. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011;5:5. Methodologically excellent proof-of-concept demonstration of machine learning application to diagnosis using EEG in ADHD.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nazhvani AD, Boostani R, Afrasiabi S, Sadatnezhad K. Classification of ADHD and BMD patients using visual evoked potential. Clin Neurol Neurosurg. 2013;115(11):2329–35.

    Article  PubMed  Google Scholar 

  36. Sadatnezhad K, Boostani R, Ghanizadeh A. Classification of BMD and ADHD patients using their EEG signals. Expert Syst Appl. 2011;38(3):1956–63.

    Article  Google Scholar 

  37. Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41(1):1–10.

    Article  PubMed  Google Scholar 

  38. Abibullaev B, An J. Decision support algorithm for diagnosis of ADHD using electroencephalograms. J Med Syst. 2012;36(4):2675–88.

    Article  PubMed  Google Scholar 

  39. Magee CA, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Examining the diagnostic utility of EEG power measures in children with attention deficit/hyperactivity disorder. Clin Neurophysiol. 2005;116:1033–1040.

  40. Sonuga-Barke EJS, Castellanos FX. A common core dysfunction in attention-deficit/hyperactivity disorder: a scientific red herring? Behav Brain Sci. 2005;28(3):443–+.

  41. Castellanos FX, Sonuga-Barke EJS, Milham MP, Tannock R. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci. 2006;10(3):117–23.

    Article  PubMed  Google Scholar 

  42. Nigg JT, Willcutt EG, Doyle AE, Sonuga-Barke EJ. Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biol Psychiatry. 2005;57(11):1224–30.

    Article  PubMed  Google Scholar 

  43. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci. 2012;16(1):17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sonuga-Barke EJ, Halperin JM. Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J Child Psychol Psychiatry. 2010;51(4):368–89.

    Article  PubMed  Google Scholar 

  45. Sonuga-Barke EJ. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry. 2005;57(11):1231–8.

    Article  PubMed  Google Scholar 

  46. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry. 1999;46(9):1234–42.

    Article  PubMed  CAS  Google Scholar 

  47. Shaw P, Eckstrand K, Sharp W, Blumenthal J, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A. 2007;104(49):19649–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sonuga-Barke EJS, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31(7):977–86.

    Article  PubMed  Google Scholar 

  49. Clarke AR, Barry RJ, Dupuy FE, Heckel LD, et al. Behavioural differences between EEG-defined subgroups of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2011;122(7):1333–41.

    Article  PubMed  Google Scholar 

  50. Dupuy FE, Clarke AR, Barry RJ, Selikowitz M, McCarthy R. EEG and electrodermal activity in girls with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2014;125(3):491–9.

    Article  PubMed  CAS  Google Scholar 

  51. Dupuy FE, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG differences between the combined and inattentive types of attention-deficit/hyperactivity disorder in girls: a further investigation. Clin EEG Neurosci. 2013.

  52. Dupuy FE, Barry RJ, Clarke AR, McCarthy R, Selikowitz M. Sex differences between the combined and inattentive types of attention-deficit/hyperactivity disorder: an EEG perspective. Int J Psychophysiol. 2013;89(3):320–7. Comprehensive assessment of gender differences in EEG measures, speaking to heterogeneity of the disorder.

    Article  PubMed  Google Scholar 

  53. Mazaheri A, Fassbender C, Coffey-Corina S, Hartanto TA, et al. Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biol Psychiatry. 2013.

  54. Willcutt EG, Nigg JT, Pennington BF, Solanto MV, et al. Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes. J Abnorm Psychol. 2012;121(4):991–1010. Definitive review of validity of ADHD subtypes, suggesting a lack of reliability in the diagnostic subtypes but consistency of the symptom dimensions (inattention versus hyperactivity/impulsivity).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hermens DF, Rowe DL, Gordon E, Williams LM. Integrative neuroscience approach to predict ADHD stimulant response. Expert Rev Neurother. 2006;6(5):753–63.

    Article  PubMed  CAS  Google Scholar 

  56. Gordon E, Cooper N, Rennie C, Hermens D, Williams LM. Integrative neuroscience: the role of a standardized database. Clin EEG Neurosci. 2005;36(2):64–75.

    Article  PubMed  CAS  Google Scholar 

  57. Ogrim G, Kropotov J, Brunner JF, Candrian G, et al. Predicting the clinical outcome of stimulant medication in pediatric attention-deficit/hyperactivity disorder: data from quantitative electroencephalography, event-related potentials, and a go/no-go test. Neuropsychiatr Dis Treat. 2014;10:231–42.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ogrim G, Hestad KA, Brunner JF, Kropotov J. Predicting acute side effects of stimulant medication in pediatric attention deficit/hyperactivity disorder: data from quantitative electroencephalography, event-related potentials, and a continuous-performance test. Neuropsychiatr Dis Treat. 2013;9:1301–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Clarke AR, Barry RJ, Dupuy FE, McCarthy R, et al. Childhood EEG as a predictor of adult attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2011;122(1):73–80.

    Article  PubMed  Google Scholar 

  60. Rubia K, Alegria A, Brinson H. Imaging the ADHD brain: disorder-specificity, medication effects and clinical translation. Expert Rev Neurother. 2014;14(5):519–38.

    Article  PubMed  CAS  Google Scholar 

  61. Cortese S, Kelly C, Chabernaud C, Proal E, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169(10):1038–55.

    Article  PubMed  Google Scholar 

  62. Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–67.

    Article  PubMed  Google Scholar 

  63. Arnsten AF. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry. 2006;67 Suppl 8:7–12.

    PubMed  CAS  Google Scholar 

  64. Bush G. Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology. 2010;35(1):278–300.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Casey BJ, Riddle M. Typical and atypical development of attention. In: Posner M, editor. Cognitive neuroscience of attention. New York: Guilford Press; 2012. p. 514.

    Google Scholar 

  67. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31(6):904–16.

    Article  PubMed  Google Scholar 

  68. Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci. 2002;3(8):617–28.

    PubMed  CAS  Google Scholar 

  69. Fair DA, Nigg JT, Iyer S, Bathula D, et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Front Syst Neurosci. 2012;6:80.

    PubMed  PubMed Central  Google Scholar 

  70. Helps SK, James C, Debener S, Karl A, Sonuga-Barke EJS. Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm. 2008;115(2):279–85.

    Article  PubMed  CAS  Google Scholar 

  71. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(3):332–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Helps SK, Broyd SJ, James CJ, Karl A, Sonuga-Barke EJS. The attenuation of very low frequency brain oscillations in transitions from a rest state to active attention. J Psychophysiol. 2009;23(4):191–8.

    Article  Google Scholar 

  73. Broyd SJ, Demanuele C, Debener S, Helps SK, et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.

    Article  PubMed  Google Scholar 

  74. Helps SK, Broyd SJ, James CJ, Karl A, et al. Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain Res. 2010;1322:134–43.

    Article  PubMed  CAS  Google Scholar 

  75. Lenartowicz A, Delorme A, Walshaw PD, Cho AL, et al. Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: vigilance, encoding, and maintenance. J Neurosci. 2014;34(4):1171–82. One of the first comprehensive assays of event-related spectral profiles in ADHD, combining spectral, event-related, independent component and source imaging analyses.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Mazaheri A, Coffey-Corina S, Mangun GR, Bekker EM, et al. Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;67(7):617–23.

    Article  PubMed  Google Scholar 

  77. Karch S, Thalmeier T, Lutz J, Cerovecki A, et al. Neural correlates (ERP/fMRI) of voluntary selection in adult ADHD patients. Eur Arch Psychiatry Clin Neurosci. 2010;260(5):427–40.

    Article  PubMed  Google Scholar 

  78. Karch S, Thalmeier T, Lutz J, Cerovecki A, et al. Neural correlates (ERP/fMRI) of behavioral control in adult ADHD. Eur Arch Psychiatry Clin Neurosci. 2010;260(5):427–40. doi:10.1007/s00406-009-0089-y.

    Article  PubMed  Google Scholar 

  79. Yan WX, Mullinger KJ, Brookes MJ, Bowtell R. Understanding gradient artefacts in simultaneous EEG/fMRI. Neuroimage. 2009;46(2):459–71.

    Article  PubMed  Google Scholar 

  80. Mullinger KJ, Havenhand J, Bowtell R. Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. Neuroimage. 2013;71:75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Debener S, Mullinger KJ, Niazy RK, Bowtell RW. Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol. 2008;67(3):189–99.

    Article  PubMed  Google Scholar 

  82. Chowdhury ME, Mullinger KJ, Glover P, Bowtell R. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Neuroimage. 2014;84:307–19.

    Article  PubMed  Google Scholar 

  83. Mullinger KJ, Castellone P, Bowtell R. Best current practice for obtaining high quality EEG data during simultaneous FMRI. J Vis Exp. 2013(76). Valuable, detailed guide to concurrent EEG-fMRI methodology.

  84. LeVan P, Maclaren J, Herbst M, Sostheim R, et al. Ballistocardiographic artifact removal from simultaneous EEG-fMRI using an optical motion-tracking system. Neuroimage. 2013;75:1–11.

    Article  PubMed  Google Scholar 

  85. de Munck JC, van Houdt PJ, Goncalves SI, van Wegen E, Ossenblok PP. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. Neuroimage. 2013;64:407–15.

    Article  PubMed  Google Scholar 

  86. Picton TW, Bentin S, Berg P, Donchin E, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000;37(2):127–52.

    Article  PubMed  CAS  Google Scholar 

  87. Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ. Blind separation of event-related brain response components. Psychophysiology. 1996;33:S58.

    Google Scholar 

  88. Makeig S, AnlloVento L, Jung P, Bell AJ, et al. Independent component analysis of event-related potentials during a selective attention task. Psychophysiology. 1996;33:S58.

    Google Scholar 

  89. Michel CM, Murray MM. Towards the utilization of EEG as a brain imaging tool. Neuroimage. 2012;61(2):371–85.

    Article  PubMed  Google Scholar 

  90. Michel CM, Murray MM, Lantz G, Gonzalez S, et al. EEG source imaging. Clin Neurophysiol. 2004;115(10):2195–222.

    Article  PubMed  Google Scholar 

  91. ADHD-200-Consortium. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci. 2012;6:62. Report of diagnostic results from the large-scale, multi-site, multivariate competition analyses of over 700 MRI datasets of children with and without ADHD.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Agatha Lenartowicz declares that she has no conflict of interest.

Sandra K. Loo has received a grant from the National Institutes of Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agatha Lenartowicz.

Additional information

This article is part of the Topical Collection on Attention-Deficit Disorder

Glossary

Alpha band

Referring to oscillations in the range of 8-15 Hz

Beta band

Referring to oscillations in the range of 16-30 Hz

Delta band

Referring to oscillations <4 Hz

Event-related desynchronization (ERD)

Decrease in power of a frequency following a stimulus in event-related spectral analysis relative to pre-event; thought to arise from decreased synchronization of neural activity in that frequency

Event-related potential (ERP)

The average EEG signal in a time window following an event of interest (e.g., beep), computed over many repetitions of that event; typically associated with transient cortical dynamics in response to a stimulus or response

Event-related spectral analysis

The average power in a time window following an event of interest (e.g., beep), computed over many repetitions of that event; computed separately across many frequencies; typically associated with transient changes in brain state

Event-related synchronization (ERS)

Increase in power of a frequency following a stimulus in event-related spectral analysis relative to pre-event; thought to arise from increased synchronization of neural activity in that frequency

Feature

A descriptor or metric of EEG data; can be categorized into subclasses (see below) such as spectral, temporal, spatial or fractal

Fractal

Referring to characterization of jaggedness or serratedness of an EEG time series

Frequency

Number of cycles of an oscillation occurring per unit time; units of Hertz (Hz) or cycles/sec; distinguishes between “fast” and “slow” oscillations

Gamma band

Referring to oscillations above 30 Hz

Independent components analysis

Statistical technique that attempts to parse multivariate data (e.g., signal across many electrodes in EEG) into latent components that describe patterns of variables that covary across some other variable (e.g., time); these components are selected to be maximally statistically independent

Machine learning

The study and design of computer-based statistical algorithms that can learn from the data; typically designed to predict categorical outcome variables such as diagnosis; logistic regression is a univariate example of Machine Learning

Multidimensional

Simultaneous observation and analysis of more than one domain of data (e.g., ERP and performance measures)

Multivariate

Simultaneous observation and analysis of more than one outcome variable

Power

A measure of the amplitude of oscillations of a particular frequency in an EEG time course; typically associated with brain state

Spatial

Referring to characterization of electrode or cortical source of EEG time series

Spectral

Referring to characterization of frequency content of EEG time series

Spectral analysis

Quantification of time series in terms of power across frequencies, producing a power “spectrum”

Synchronization

The degree to which two or more neural units (cells or populations) show oscillations of a particular frequency that are the same across time (i.e., have the same phase and amplitude); the metric of “coherence” is sometimes used in analog to the “correlation” coefficient, to quantify this co-variation

Temporal

Referring to characterization of time content of EEG time series

Theta band

Referring to oscillations in the range of 4-7 Hz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenartowicz, A., Loo, S.K. Use of EEG to Diagnose ADHD. Curr Psychiatry Rep 16, 498 (2014). https://doi.org/10.1007/s11920-014-0498-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-014-0498-0

Keywords

Navigation